
HORIZON EUROPE FRAMEWORK PROGRAMME

CloudSkin
(grant agreement No 101092646)

Adaptive virtualization for AI-enabled Cloud-edge
Continuum

D2.3 CLOUDSKIN Architecture Specs and Early Prototypes

Due date of deliverable: 30-06-2024
Actual submission date: 28-06-2024

Start date of project: 01-01-2023 Duration: 36 months

Summary of the document

Document Type Report

Dissemination level Public

State v1.0

Number of pages 77

WP/Task related to this document WP2 / T2.1-T2.4; WP5 / T5.4-T5.7

WP/Task responsible URV

Leader Marc Sanchez-Artigas (URV)

Technical Manager Josep LL. Berral (BSC)

Quality Manager Raúl Gracia (DELL)

Author(s) Raúl Gracia-Tinedo (DELL), Sean Ahearne (DELL), Omar
Jundi (DELL), Ger Hallissey (DELL), Carlos Segarra (IMP),
Peter Pietzuch (IMP), Peini Liu (BSC), Ardhi Putra Pratama
Hartono (TUD), Marc Sanchez-Artigas (URV), Josep Calero
(URV), José Miguel García (ALT), Bernard Metzler (IBM),
María A. Serrano (NBC).

Partner(s) Contributing All partners

Document ID CloudSkin_D2.3_Public.pdf

Abstract

Specification of the Architecture and APIs.
Documentation, early tutorials, and automated tests for
the early prototypes of the different software components.
First description and evaluation of the results obtained
from use cases’ validation using different experiments and
workloads.

Keywords

Architecture; Use Cases; Benchmarking; Testbed;
Continuum; AI; Orchestration; WebAssembly; Ephemeral
Storage; Mobile Computing; Streaming; Metabolomics;
Dataspace

History of changes

Version Date Author Summary of changes

0.1 09-04-2024 Marc Sanchez-Artigas Structure of the document; First draft of
Architecture specs.

0.1 27-04-2024 Josep Calero, Marc
Sanchez-Artigas

Description of the metabolomics use case.

0.1 27-04-2024 Raúl Gracia-Tinedo,
Sean Ahearne, Omar
Jundi

Description of the surgery use case PoC and
experiments.

0.2 30-05-2024 Peini Liu Added subsection on Learning Plane prototype
and mobility use case.

0.2 30-05-2024 Javier Santaella Added subsection "Castelloli infrastructure" on
mobility use case.

0.2 03-06-2024 Carlos Segarra, Peter
Pietzuch

Initial text for WP4 (C-Cells).

0.2 06-06-2024 Bernard Metzler Added subsection on GEDS prototype

0.3 20-06-2024 Carlos Segarra, Peter
Pietzuch

Update S5 with missing diagrams after M18
meeting.

0.4 20-06-2024 Jose Miguel Garcia Description for Agricultural Use Case.

1.0 25-06-2024 Marc Sanchez-Artigas Final version.

HORIZON - 101092646 CloudSkin
30/06/2024 RIA

Table of Contents

1 Executive summary 4

2 Introduction 5
2.1 Main innovations . 5
2.2 Purpose of this document . 5
2.3 Means of verification . 6

3 Architecture specifications 7
3.1 Global Architecture . 7
3.2 Execution Workflow . 9
3.3 Where is the AI? A Distributed Learning Plane . 10
3.4 Functional Specifications . 11
3.5 Software components. 14

4 Early prototypes 15
4.1 Platform prototypes . 15

4.1.1 Learning Plane (LP) prototype . 16
4.1.2 C-Cells prototype . 17
4.1.3 GEDS prototype . 18

4.2 Use case prototypes . 19
4.2.1 Nearby Orchestration Platform . 19
4.2.2 Lithops Serve . 26
4.2.3 Pravega Streaming for NCT . 27
4.2.4 Agricultural Dataspace . 29
4.2.5 Granny: Granular Management of Scientific Applications with C-Cells 30

5 Use cases 32
5.1 Use Case: Mobility . 33

5.1.1 Overview . 33
5.1.2 Status of the use case at M18 . 34
5.1.3 Why this use case needs the compute continuum? 34
5.1.4 Where AI helps in this use case? . 35
5.1.5 Experiments, KPIs and benchmarks . 35
5.1.6 Early results . 35

5.2 Use Case: Metabolomics . 37
5.2.1 Overview . 37
5.2.2 Status of the use case at M18 . 38
5.2.3 Why this use case needs the compute continuum? 38
5.2.4 Where AI helps in this use case? . 39
5.2.5 Experiments, KPIs, and benchmarks . 39
5.2.6 Objective 1: Early results . 40
5.2.7 Objective 2: Early results . 45

5.3 Use Case: Computer-Assisted Surgery (CAS) . 49
5.3.1 Overview . 49
5.3.2 Status of the use case at M18 . 49
5.3.3 Why this use case needs the compute continuum? 50
5.3.4 Where AI helps in this use case? . 50
5.3.5 Experiments, KPIs, and benchmarks . 51
5.3.6 Early results . 52

5.4 Use Case: Agriculture . 58

i

HORIZON - 101092646 CloudSkin
30/06/2024 RIA

5.4.1 Overview . 58
5.4.2 Status of the use case at M18 . 65
5.4.3 Why this use case needs the compute continuum? 66
5.4.4 Where AI helps in this use case? . 66
5.4.5 Experiments, KPIs and benchmarks . 66
5.4.6 Early results . 67

6 Description of testbeds implementation and setup 70
6.1 Testbed for the mobility use case . 70
6.2 Testbed for the metabolomics use case . 71
6.3 Testbed for the CAS use case . 74
6.4 Testbed for the agriculture use case . 74

7 Conclusions 75

ii

HORIZON - 101092646 CloudSkin
30/06/2024 RIA

List of Abbreviations and Acronyms

AEMET Agencia Estatal de Meteorología (State Meteorological Agency (Spain))

AI Artificial Intelligence

AoT Ahead-of-Time

API Application Programming Interface

AR Augmented Reality

AWS Amazon Web Services

C-Cell Cloud-edge Cell

CAS Computer-Assisted Surgery

CC Creative Commons

CFI Control Flow Integrity

COS Cloud Object Storage

CPU Central Processing Unit

CSV Comma-Separated Values

DHCP Dynamic Host Configuration

DL Deep Learning

DOI Digital Object Identifier

DRAM Dynamic Random-Access Memory

EC2 Elastic Compute Cloud

ECS Elastic Container Service

EKS Elastic Kubernetes Service

FaaS Function-as-a-Service

FDR False Discovery Rate

FR Functional Requirement

GEDS Generic Ephemeral Data Storage

GPU Graphics Processing Unit

GUI Graphical User Interface

HDFS Hadoop File System

HPC High-Performance Computing

HPDA High-Performance Distributed Analytics

JIT Just-in-Time

JNI Java Native Interface

Page 1 of 77

HORIZON - 101092646 CloudSkin
30/06/2024 RIA

JSON JavaScript Object Notation

K8s Kubernetes

KER Key Exploitable Result

KPI Key Performance Indicator

LCM Life-Cycle Management

LTS Long-Term Storage

ML Machine Learning

MPI Message Passing Interface

MS Imaging Mass Spectrometry

NAS Network-Attached Storage

NAT Network Address Translation

NDVI Normalized Difference Vegetation Index

NFS Network File System

NVMe Non-Volatile Memory express

OCI Oracle Cloud Infrastructure

OLTP Online Transactional Processing

OOM Out Of Memory

OS Operating System

PAT Port Address Translation

PoC Proof of Concept

PVA Predictive Video Analytics

QoS Quality of Service

RAM Random Access Memory

ROS Robot Operating System

RTSP Real-Time Streaming Protocol

S3 Simple Storage Service

SDK Software Development Kit

SFI Software Fault Isolation

SGX Software Guard Extensions

SIAM Sistema de Información Agraria de Murcia (Murcia Agricultural Information System)

SLA Service Level Agreements

SLO Service Level Objectives

Page 2 of 77

HORIZON - 101092646 CloudSkin
30/06/2024 RIA

SSD Solid-State Drive

TCB Trusted Computing Base

TEE Trusted Execution Environment

TTFB Time To First Byte

VA Video Analytics

VM Virtual Machine

WAL Write-Ahead Log

Wasm, or WASM WebAssembly

XLSX, or XLS Excel Spreadsheet

Page 3 of 77

HORIZON - 101092646 CloudSkin
30/06/2024 RIA

1 Executive summary

This document constitutes the second deliverable of WP2: Architecture and Software Validation. It
details the architecture of the CloudSkin platform and examines the interactions among its software
components to culminate in the creation of a true cognitive computing continuum. This document
not only describes the core components of the platform, but also presents the early Proof-of-Concept
(PoC) prototypes for the four use cases in the project: automotive, metabolomics, computer-assisted
surgery, and agriculture. The report also outlines the different functional requirements and KPIs of
the CloudSkin platform, and provides use case-specific KPIs to showcase how the platform simplifies
and empowers the use cases with measurable impact. Finally, the deliverable details the Cloud-edge
testbeds and provides early results of the different technologies.

Page 4 of 77

HORIZON - 101092646 CloudSkin
30/06/2024 RIA

2 Introduction

As of today, 80% of the data processing and analysis occurs in Cloud data centers, while only 20%
of processing occurs at the edge. In addition to the dominance of the European Cloud market by
non-EU players, the incipient exploitation of edge resources prevents business processes, decisions,
and intelligence to be taken outside of the core IT environment.

With the spirit of curtailing the inter-dependency of the non-EU Cloud providers, the CloudSkin
project aims to design a cognitive Cloud continuum platform to fully exploit the available Cloud-
edge heterogeneous resources, finding the “sweet spot” between the Cloud and the edge, and smartly
adapting to changes in application behavior via AI.

To realize this idea, this project works across various disciplines in order to develop technologies
to integrate and orchestrate the distributed data and compute resources. Novel solutions are needed
at various levels, from system design, libraries and frameworks, up to data-driven orchestrators that
can react to dynamic data volumes, monitoring tools, multi-site data governance policies, etc.

2.1 Main innovations

To cover the above requirements to a large extent, CloudSkin pursues to implement a cognitive Cloud
continuum platform with three main innovations:

• [IN1]. The CloudSkin platform will leverage (novel) AI/ML techniques to optimize workloads,
resources, energy, and network traffic in a holistic manner for a rapid adaptation to changes in
application behavior and data variability. The major goal will be to build a “Learning Plane”
that, in cooperation with the application execution framework [IN2] and the Cloud continuum
infrastructure [IN3], can enhance the overall orchestration of Cloud-edge resources. This plane
will be the materialization of the cognitive cloud, where decisions on the cloud and the edge are
driven by the continuously obtained knowledge and awareness of the computing environment
through AI, and particularly, neural networks and statistical learning, taking the challenge of
enabling these methods into low-power edge devices.

• [IN2]. The CloudSkin platform will also help users to achieve “stack identicality” across the
continuum, where legacy software stacks running in data centers and HPC clusters (e.g., MPI)
can seamlessly run at remote edges, and the code has not need to be rewritten for the targeted
platform at hand. And not less important, this innovation also pursues a high level of security, a
critical requirement when processing data off-premises. This will be met with the development
of a universal virtualization abstraction built upon WebAssembly (Wasm) [1] and the so-called
Trusted Execution Environment (TEE) technologies to protect data while it is in use.

• [IN3]. CloudSkin will also contribute to instrument the storage infrastructure with hooks that
enable optimizing end-to-end performance and other key performance indicators (KPIs). This
includes developing novel systems that can cover an even wider range of use cases (e.g., a
real-time use case with improved fault-tolerance). The infrastructure will expose the relevant
control knobs to enable dynamic reconfiguration of resources as assisted by the AI/ML-based
orchestration plane in the CloudSkin platform.

In this sense, the proper validation of CloudSkin, along with the successful demonstration of its
impact to the EU at all levels, will require of an exhaustive validation of the main innovations through
several benchmarks and more importantly, through representative use cases. In particular, the four
use cases of the project belong to different European data spaces, say 5G automotive; metabolomics;
surgery; and agriculture.

2.2 Purpose of this document

This document describes the architecture of the CloudSkin platform used throughout the project. The
system architecture description involves:

Page 5 of 77

HORIZON - 101092646 CloudSkin
30/06/2024 RIA

• Description of the global architecture

• Means of verification and key performance indicators (KPIs)

• Schematic decomposition of the early prototypes,

• Description of interfaces.

In addition, this document also provides a first description and evaluation of the results obtained
from the evaluation of use cases using different experiments and workloads. All these topics are
addressed in the following sections in this document.

This document is created with the best knowledge available at the moment of writing. The details
however are subject to change, during the course of the Cloudskin project additional knowledge may
become available throughout the process of experiment and development. Furthermore, external
influences (e.g., to other EU-funded related projects) may require interfaces to change and can lead
to new specifications.

2.3 Means of verification

The three innovations in the project will be validated in real settings using the following general KPIs:

Table 1: Primary KPIs for validating the CloudSkin platform.

Means of verification & KPIs

• KPI1: Delivering equivalent performance of instrumented Cloud-edge programs compared
with centralized Cloud (≈ 1X performance).

• KPI2: Reduction of cloud offloading (> 50%), while amortizing edge resources and saving
communication bandwidth.

• KPI3: Achieving real-time processing in edge data analytics, at least in one use case.

• KPI4: Cloud-edge cells startup times at least 10% faster than containers.

• KPI5: Execution of complex software stacks such as MPI, and OpenMP “as is” with Cloud-
edge cells at close to native speeds despite virtualization (≈ 1X performance).

• KPI6: Automatic conversion of legacy applications into confidential TEE-enabled Cloud-
edge cells (zero development effort).

• KPI7: Microsecond data access latency despite virtualization and adaptive scaling.

• KPI8: Automated data-tiering and allocation with very low impact on performance (<1%).

• KPI9: At least 2x acceleration of workload processing with serverless computing.

Each use case can contribute other specific KPIs, but the above KPIs constitute a representative
reference validation platform (RVP) for the project.

Page 6 of 77

HORIZON - 101092646 CloudSkin
30/06/2024 RIA

3 Architecture specifications

3.1 Global Architecture

The three main innovations [IN1 − 3] will contribute new software components that will be unified
in the CloudSkin smart continuum platform through a logically layered specification:

• L3. Orchestration layer. A fundamental piece of the CloudSkin software stack is its AI-enabled
orchestration layer. The main goal of this layer is the identification of the best provisioning,
placement and partitioning policies and strategies between the Cloud and edge servers, while
dynamically fulfilling the changing requirements of applications.

Different tasks might have different resource demands or data transfer requirements, either on
the edge and the Cloud. To this aim, at the core this layer will lie an innovative Learning Plane
as the AI-based tool towards the smart and holistic orchestration of the Cloud-edge continuum.
The Learning Plane will be in charge of extracting knowledge from the continuum components,
and provide the full software stack with recommendations, predictions and additional inferred
information towards decision making and global system optimization. This will include the
resource provisioning mechanisms, such as virtualization, containerization and storage in the
execution layer, as well as the storage services in the infrastructure layer.

• L2. Execution layer. Tapping into the CloudSkin continuum platform, developers will be able
to implement general applications capable of spanning the entire Cloud-edge continuum. This
will be possible because CloudSkin will provide a universal and adaptive virtualization layer.
That is, “universal” because will offer a lightweight execution environment with a similar (or
even “identical”) software interface, allowing unmodified code to be execute in any machine in
the system. Further, “adaptive” because will be able to transparently leverage hardware-based
acceleration and/or isolation support when available, for example, with TEEs to facilitate the
confidential processing of sensitive data off-premises like Intel SGX [2]. The new virtualization
technology built upon WebAssembly [1] is termed C-Cells.

• L1. Infrastructure layer. The modern lightweight virtualization technology developed in the
execution layer will enable compute units to scale up or down in milliseconds, reporting rapid
responses to data consumers, and even execute monolithic applications (e.g., written in MPI).
However, supporting the wide variety of Cloud-edge workloads, from monolithic applications,
microservices, as well as streaming computations requires a powerful and varied set of storage
abstractions. Otherwise, I/O operations such as the ingestion of a stream of compressed video
frames, or the maintenance of a shared state, can be definite showstoppers for the performant
execution of edge-to-Cloud workloads if not properly handled.

In other words, an efficient execution abstraction for the continuum such as that of L2 with very
low startup times can render useless if I/O operations are comparatively slow. For instance, for
short-lived tasks, resorting to disk-based storage with I/O operations amounting to 5–10 ms
may be a too high penalty to pay.

As one of the most common architectures, a layered approach presents many benefits. First off, it
provides a clear separation of concerns, where each software layer performs a specific role within the
continuum. But also, it favours change isolation, i.e., future changes in one layer specification should
not affect the rest of the layers. As an on-going research project, a layered design will make it easier
to support an iterative methodology with short design-prototyping-validation cycles for the project.

To summarize, the CloudSkin layered architecture will be built on new enabling technologies
contributing to core layers of the cloud continuum, which are:

• Smart management and orchestration functionalities (layer L3);

• Adaptive virtualization and universal execution environment (layer L2); and

Page 7 of 77

HORIZON - 101092646 CloudSkin
30/06/2024 RIA

• Optimized management of ephemeral data (layer L1).

From a bird’s eye view, the layered architecture is given in Fig.1. The orchestration layer includes
the Learning Plane, the brain of the CloudSkin platform. It fulfills different AI-related functionalities
such as ① capturing state and telemetry information, ② modeling the system, ③ managing the catalog
of models, and ④ serving recommendations, predictions and forecasting. Since there is a large variety
of orchestrators (NearbyOne by NBC, C-Cells Planner or Lithops), the Learning Plane must be able to
interface with the different orchestrators in the control plane. Orchestrators are the actuators that can
put the recommendations from the Learning Plane into action. Examples of typical actions are the
provisioning of a new worker, the live migration of a C-Cell between the Cloud and the edge, or the
placement of task in the suitable edge server.

O
rc
h
es
tr
at
io
n

La
ye
r

V
ir
tu
al
iz
at
io
n

La
ye
r

In
fr
as
tr
u
ct
u
re

La
ye
r

Learning Plane

Monitoring

Control Plane

Workload

placement and

migration solver

C-Cells

Cloud
Edge Worker (x86)

C-Cell

Edge Worker (ARM)

C-Cell

C-Cell

C-Cell

…

Worker (x86)Edge

1 2

Serverless functions

TEE

Confidential

execution

Live migration

capture state migrate C-Cell dispatch task

Start of stream

(Head)

End of stream

(Tail)

Historical data Newest data (WAL, cache)

write event read event

RAM

NVMe

SSD

write file

Hot

data

Warm

data

Multi-tiering
Long-Term Storage

read file

IBM GEDS
Pravega

Figure 1: Layered Architecture for the CloudSkin platform.

In the virtualization layer lies the worker machines that execute the (WebAssembly-)containerized
applications in forms of C-Cells, serverless functions, and Kubernetes pods. One important feature of
the virtualization layer is ① Live migration support: C-Cell execution must be able to be interrupted
and transferred from one host to another across the heterogeneous Cloud-edge continuum with no
(or little) disruption to the application execution. Another key feature is ② Adaptive virtualization,
which means that optionally and transparently, depending on the data being processed, C-Cells must
support hardware-based acceleration (e.g., GPUs) and confidential execution with Trusted Execution
Environments (TEE) [3] (e.g., Intel SGX [2]). The CloudSkin platform uses SCONE [4] for this aim.

In the infrastructure layer can be found a series of storage services to keep up with data-intensive
applications (e.g., Computer-Assisted Surgery). This includes ① Streaming workloads, where data
streams must be durable, consistent, and elastic, but also ② Batch jobs with performance critical I/O
operations, such as data shuffling or sharing of data between tasks. As depicted in Fig. 1, CloudSkin
handles both types of workloads with the help of Pravega streams and the IBM GEDS storage service.
At this layer, we highlight two important features:

• Elasticity: is vital to strictly ensure that only no extra storage resources are provisioned to hold
the working dataset, a distinguishing feature compared to a classic managed services such as
Cloud key-value stores (e.g., AWS S3). Elasticity can be accomplished at multiple levels. This
is crucial to real-time applications such as the Computer-Assisted Surgery use case, where the
resource pool must be dynamically adjusted to adapt to the current number of surgeries. Since

Page 8 of 77

HORIZON - 101092646 CloudSkin
30/06/2024 RIA

Pravega streams can change their parallelism on the fly, CloudSkin opens the door to develop
proactive autoscaling mechanisms, e.g., using a learning-based forecast model to improve end-
to-end latency.

• Multi-tiering: While storing all the ephemeral data in DRAM is preferred from a performance
standpoint, doing so typically is too costly or impossible on low-end edge devices. Therefore,
an efficient storage platform for temporary data should integrate multiple storage technologies
that offer different performance cost trade-offs. Overall, multi-tier storage can be beneficial for
several reasons in the continuum. First, it allows to dynamically exceed local storage resource
bounds, either accidentally or intended (e.g., by relocating the less frequently used objects off
thin edge devices). Second, it enables the integration of Cloud storage services (e.g., AWS S3)
for reading input data and writing final output data seamlessly under a common namespace.
And third, a higher storage tier can be used for checkpointing and recovery of working datasets
in case of failure.

3.2 Execution Workflow

Given the need to accommodate a variety of edge-to-Cloud workloads and applications, the system
architecture cannot be tied to a single type of orchestrator. Just in the project, different flavors of edge
and Cloud orchestrators coexist together: Function-as-a-Service (FaaS) orchestrators such as Lithops,
and edge orchestrators such as NearbyOne [5], specialized to support different types of applications
across both on-prem edge and the network edge (network functions, e.g., RAN, distributed core). For
this reason, it is important to provide an overview of how an application can typically run under the
CloudSkin platform. This requires the following steps:

❶ Package the application into containers or functions: To execute an application on CloudSkin,
developers are expected to package it into one or more containers, WebAssembly binary files,
as well as serverless functions. As usual, we assume a container to be a standalone executable
package that comprises everything needed to run the application, including the code, runtime,
system tools and libraries. In the case of WebAssembly, we recall that WebAssembly is a binary
format designed to run on a target architecture and execute the application code in a sandbox,
isolated from the host computer, at near-native performance. This means that the system itself
must provide the runtime to execute the WebAssembly binaries. This relieves users from such
responsibility, but also means that the runtime must be able to run programs of all sorts such as
C, C++, Rust microservices, etc. and even monolithic OpenMP and MPI programs. We achieve
this with the novel C-Cells runtime. For serverless functions, the language-specific runtime is
expected to be provided by the system as well.

❷ Push the code to a CloudSkin supported orchestrator: This requires to describe the initial state
of the application (e.g., the number of replicas of each container) to manage the deployment and
scaling of the application. This information is orchestrator-specific. To illustrate this, we notice
that Kubernetes uses manifest files. Or Lithops uses simple configuration files in YAML format.
Whatever the orchestrator is, it must interface with the Learning Plane through a standardizable
API to relinquish AI-enabled decision-making to the Learning Plane.

❸ Expose the application to the Learning Plane: Once the code is uploaded to orchestrator, the
orchestrator relays the application information to the Learning Plane. Equipped with resource
usage information, the Learning Plane can forecast QoS values across the compute continuum.
Based on these predictions, a heuristic algorithm determines the optimal system for application
placement. This can be archived with historical placement records. As more data accumulates,
task placement can become more precise to optimize resource utilization, improve performance
or curtail monetary costs. Data-driven algorithms such as neural networks are good candidates.
However, to get optimal prediction results, the training dataset needs to be pretty good with a
low avoidable bias. Also, the training set needs to generalize very well to similar applications to
be useful. Whatever the method is, a recommendation is bounced back to the orchestrator.

Page 9 of 77

HORIZON - 101092646 CloudSkin
30/06/2024 RIA

Learning Plane

Monitoring
Workload

placement and

migration solver

Control Plane

Nearby One Orchestrator

Edge Cluster

Video analytics

application

5

2

1

3

4

video

stream

Containerize

the application

Expose application

to the Learning

Plane
Receive recommendation

from the Learning Plane

Deploy

application

Monitor application

Run the

application

Figure 2: Execution workflow for a video analytics application on CloudSkin.

❹ Deploy the application: With the recommendation from the Learning Plane, the orchestrator
then deploys the application containers, or the WebAssembly binaries, to the optimal platform
in the Cloud and the edge. The placement recommendation may be coarse-grained in the sense
that the Learning Plane may propose the deployment of an application to a given Kubernetes
edge cluster but not indicate to which cluster node. Or it may be fine-grained and exploit node
affinity in Kubernetes to constrain placement to GPU nodes or with Intel SGX support.

❺ Monitor and manage the deployed application: After the application has been deployed, the
Learning Plane maintains continuous surveillance over both the application and the continuum
infrastructure, assessing the need for re-provisioning or live migration. This can occur due to a
number of reasons such as the arrival of a new application or due to a change in the application
workload. For instance, this can take place in the Metabolomics use case due to the arrival of a
large number of images to classify, or due to the scheduling of a new surgery in the Computer-
Assisted Surgery use case.

If a new application arrives, then the steps ❶ to ❹ are followed. Notice that the arrival of a new
application may trigger the relocation of a running application to another site to maximize QoS.
To handle workload changes, the Learning Plane will regularly try to anticipate application QoS
parameters across the heterogeneous continuum systems, leveraging real-time monitoring data
to enrich the forecasting process.

These are the general steps to deploy an application on CloudSkin. Depending on the complexity
of the application, additional steps may be required, such as configuring storage and networking at
the infrastructure layer. However, the above discussion should be a good starting point for deploying
applications on the CloudSkin platform. We summarize these steps in the example in Fig. 2 where a
video analytics application is deployed using the edge-to-Cloud NearbyOne [5] orchestrator.

3.3 Where is the AI? A Distributed Learning Plane

AI models, time-series forecast methods, etc. are planned to be logically centralized in the Learning
Plane. But this does not mean that the Learning Plane will be centralized in the Cloud. A distributed
Learning Plane allows a Cloud or a server to combine models from multiple participants, with each
participant training their own model locally. For instance, while the decision of whether to relocate
an application requires of global knowledge, provisioning local resources for an application can be
realized in the Cloud or edge platform where it runs. This allows the natural handling of distributed

Page 10 of 77

HORIZON - 101092646 CloudSkin
30/06/2024 RIA

data sets, which is a common scenario in many real-world applications, and in some of the use cases
in the project. A distributed approach has the following two main benefits:
Low latency. For latency-sensitive use cases, enabling intelligence, or at least some parts of it, close
to the infrastructure and data sources is essential. This happens in the Mobility use case, but also in
applications that are characterized by high data velocity, such as the real-time analytics and medical
imaging involved in the Computer-Assisted Surgery use case. For this reason, parts of the Learning
Plane will be migrated to the edge to ensure low-latency processing. This approach will enable novel
applications that involve massive data streams that need to be analyzed in a time-critical, secure, and
latency-bounded manner.
Privacy. Also, deploying intelligence at the edge can enhance privacy by narrowing the extent of data
disclosure, especially with the adoption of distributed ML models such as federated learning [6]. This
is important for applications that need to address privacy concerns such as the Computer-Assisted
Surgery use case, which manages health-related information that have to store and manage locally.

However, it also has its risks. A distributed Learning Plane also open doors to abuses and attacks.
For instance, if a AI model is trained locally at an edge server, and is later outsourced to the Cloud,
unauthorized inference on its prediction output should be prevented against sensitive information
leakage about the private data used in training the model or against the potential linkage to a private
individual based on the sensitive data (e.g., disease surgery) in the prediction output.

In the second half of the project, we will ponder the respective advantages of centralization and
decentralization and find suitable tradeoffs to combine the benefits of each type of architecture in
the different use cases.

3.4 Functional Specifications

Here we provide the main functional requirements (FRs) for the CloudSkin platform. We summarize
them in Table 2. FRs associated to each use cases may vary in the second half of the project as early
prototypes evolve to MVP (Minimum Viable Product) and include more features. Table 2 reflects the
on-going and intended associations between FRs and use case as of M18 of the project.

To best of our knowledge, we see this set of FRs enough to accomplish the mission of CloudSkin,
while not falling in the trap of overengineering the solution with unnecessary features that make the
system lose generality.
Further contextualization. Some FRs in Table 2 need further contextualization within the scope of
the project:

• As per FR1, observe that orchestration and management can vary significantly depending on
the use case at hand, making specific orchestration stacks a better option than a “one size fits
all” approach. For instance, Kubernetes (K8s) [7] can be an ideal orchestrator for Cloud-native
apps. Lithops [8] is proficient in serverless multi-cloud orchestration, while other orchestrators
such as NearbyOne [5] are specifically tailored for 5G edge scenarios.

• As per FR5, it must be noted that for some use cases, where certain computations do not need to
migrate across the Cloud continuum, non-WebAssembly software stacks (e.g., Apache Spark)
that are complex to compile to WebAssembly will be leveraged as is for better performance.

To span the whole continuum, FR5 also implies supporting heterogeneous architectures and in-
struction sets. As of today, not all WebAssembly execution modes, namely, interpreted, Ahead-
of-Time (AoT) compiled, and Just-in-Time (JIT) compiled are supported in all architectures.

• FR6 is a fundamental functional requirement. Simply put, it qualifies the CloudSkin platform
to execute sandboxed code from different tenants within the same container with equivalent
semantics to threads and processes, as well as transparently moving it around the continuum in
conjunction with FR4. WebAssembly may play here a key role as it has the sufficient generality
to support continuum applications, as well as a superior lightness compared to containers [9],

Page 11 of 77

HORIZON - 101092646 CloudSkin
30/06/2024 RIA

resulting in a powerful tool to run multi-platform software with non-significant performance
degradation and small memory footprints.

• Capitalizing on a long experience in building high-performance and ephemeral storage such as
Apache Crail [10] and Pocket [11], a new ephemeral storage service called “Generic Ephemeral
Data Store”, or GEDS for short, is under development by IBM to provide advanced support for
data management across the continuum and thus fulfill FR8.

Page 12 of 77

HORIZON - 101092646 CloudSkin
30/06/2024 RIA

Table 2: Main functional requirements for the CloudSkin platform at M18.

The four use cases will be labelled as: Mobility (stands for “Orchestration of Applications in Cloud-edge and
Mobile Scenarios”, Metabolomics (stands for “Spatial Metabolomics”), CAS (stands for “Computer-Assisted
Edge-based Surgery use case”), and Agriculture (stands for “Agriculture Dataspace”).

No. Functional requirement Software
layer(s)

Associated
use case(s)

Further context and implications

FR1 Respond and adapt intelligently to
changes in application behavior and
data variability to optimize where data
is being processed (e.g., very close to
the user at the edge, or in centralized
capacities in the Cloud).

L3 Mobility,
Metabolomics,
CAS

This will require to interface with
orchestrators to offer automatic
deployment, mobility and secure
adaptability of services from Cloud to
edge.

FR2 Ensure extensibility of the AI-enabled
control plane with new Machine and
Deep Learning models to expand the
reach of the CloudSkin platform to
other use cases.

L3 All Interoperability challenges may arise
between computing providers,
orchestrators and the Learning Plane.
Open standards, interoperability
models and open platforms should be
considered where appropriate.

FR3 Collect and manage metrics and
telemetry to extract knowledge from
both the underlying infrastructure and
the decision-making systems.

All All This will require to develop an
interface to push telemetry data to the
Learning Plane. Standard
open-source monitoring and alerting
systems (e.g., Prometheus [12])
should be considered where
appropriate.

FR4 Enable migration of execution contexts
and data in order to facilitate
cross-Cloud, Cloud-edge and
cross-edge workflow execution to
transparently integrate the diverse
compute continuum resources.

All All Migration of execution contexts and
data needs to be lightweight to make
relocation transparent to users.
Services may be self-migratable,
require independence from the
provider (FR5) and demand trusted
execution (FR7).

FR5 Provide an adaptive virtualization
layer that enables the seamless
execution of the same legacy code
across the whole continuum (e.g, both
in an HPC cluster or an at edge server).

L2 Agriculture This requires the use of portable
super lightweight containers that can
run anywhere from the edge to the
Cloud, e.g., based on
WebAssembly [1].

FR6 Virtualize execution memory such that
code from different suppliers can
safely execute side-by-side in the same
physical machine.

L2 Metabolomics This requirement calls for safety
guarantees such as Software Fault
Isolation (SFI) to protect
computations from security breaches
and other types of failures and
enforce strict boundaries between
collocated processes.

FR7 Ensure confidential processing of data
to make users confident that their
sensitive data will stay private and
encrypted even while being processed
in the Cloud and edge.

L2 All This not only requires the confidential
execution of native code, but of
lightweight WebAssembly containers
to comply with FR5.

FR8 Develop efficient Cloud and edge
storage services for efficiently
managing ephemeral data.

L1 CAS To improve I/O performance, the
storage service must also support
multi-tiering to achieve the targeted
performance at the lowest possible
cost, as well as to make data survive
temporary failures at the edge.

FR9 Integrate an elastic streaming storage
fabric to enable edge use cases with
stringent low-latency streaming
requirements, such as real-time video
analytics.

L1 CAS While auto-scaling mechanisms for
stream processing engines exist,
elasticity for data streams in the
storage is challenging, but it is crucial
to adapt to changing data rates.

Page 13 of 77

HORIZON - 101092646 CloudSkin
30/06/2024 RIA

3.5 Software components.

As already stated in D2.1, Table 3 provides the complete list of the software technologies that will be
integrated into the CloudSkin platform. For each software tool, this table provides a short description
of it and indicates the main software layer where it belongs, namely layer L1, or the infrastructure
layer; layer L2, or the continuum execution layer; and layer L3; or the AI-enabled orchestration layer.
As listed in this table, the CloudSkin software platform will be built upon components delivered by
the partners, most of them open-sourced, or on well-known open-source software components.

As expected, the tools contributed by the partners are being reworked to provide the functionality
needed to meet the functional requirements. One example of this is the new C-Cell abstraction that
is being built by reshaping Faasm [9], a high-performance stateful serverless runtime, as stated in
deliverable D4.1.

Futher, the project represents a great opportunity for partners to add the functionality needed to
support Cloud-edge applications into their portfolio offerings (e.g., NBC will integrate the project
advances into its flagship 5G orchestration service: NearbyOne [5]).

Table 3: Software technologies for CloudSkin.

Name License
(Owner)

Software Layer Short Description

Kubernetes;
Knative

Open-source
(CNCF)

L3 – Orchestration Container orchestration systems for automating
software deployment, scaling, and management.

SCONE Community
Edition
(SCONTAIN)

L2 – Execution Open source confidential computing platform that
supports the execution of sensitive applications
with TEE technology inside of containers.

Faasm Open-source
(Apache)

L2 – Execution High-performance stateful serverless runtime that
Faasm combines software fault isolation from
WebAssembly with standard Linux tooling.

Lithops Open-source
(Apache)

L3 – Orchestration Lithops is a Python multi-Cloud serverless data
processing framework. Lithops offers an extensible
architecture with compute and storage backends
for major Cloud providers and open source
container platforms.

TensorFlow;
Pytorch

Open source
(Apache;
BSD)

L3 – Orchestration Frameworks used for ML and AI development,
mainly focused on training and inference of deep
neural networks.

NearbyOne Open-source
(ETSI);
Propietary
license
(Nearby
Computing)

L3 – Orchestration Orchestration and automation tool for the
edge-to-cloud ecosystem: Infrastructure,
Connectivity and Applications

GEDS Open-source
(Apache)

L1 – Infrastructure Fast, distributed and multi-tiered data store that is
being designed specifically for managing
ephemeral data.

Pravega Open-source
(CNCF)

L1 – Infrastructure Pravega is an open source distributed streaming
storage service. A Pravega stream stores
unbounded parallel sequences of bytes in a
durable, elastic and consistent manner while
providing unbeatable performance and
automatically tiering data to scale-out storage.

Page 14 of 77

HORIZON - 101092646 CloudSkin
30/06/2024 RIA

4 Early prototypes

Here we discuss the design and implementation of the first prototypes in the project. We distinguish
between platform prototypes and use case prototypes. Concretely, we consider platform prototypes
to be core components of the platform in the sense that they allow the CloudSkin platform to expand
to other scenarios beyond the use cases of the project. On the other hand, use case prototypes refer
to prototypes that has been designed to address the specific requirements of use cases and combine a
subset of the platform prototypes with custom system development. The main reason is to empower
the existing software in use cases to harness the combined power of Cloud and edge resources. This
has the advantage of favoring “exploitation” by maintaining long software developments in use cases
that has already been identified as key exploitable results (KERs). Just to illustrate, the METASPACE
platform1 for spatial metabolomics leverages Lithops [13] as the computing substrate. With the help
of the CloudSkin platform, we are extending Lithops to include other computing platforms both in
the Cloud and the edge.

Table 4: List of early platform prototypes.

Name Software Layer Functional
Requirements

KPIs Short Description

Learning
Plane

L3 – Orchestration FR1, FR2, FR3 KPI1,
KPI2

Learning Plane data-connector agent has
capabilities to connect orchestrators by writing
customized actuator (FR1), to call different ML
inference pipelines generated by different use
cases (FR2), and to connect telemetry and save
predictions data to the database (FR3).

C-Cells L2 – Execution FR5, FR6, FR7 KPI1,
KPI4,
KPI5,
KPI6

In D4.2 we present Granny, a first prototype of a
distributed system that uses CloudSkin,
C-Cells, and C-Cells live migration to improve
the performance and utilization of legacy MPI
and OpenMP applications when executed in a
shared cluster of VMs in the cloud.

GEDS L1 – Infrastructure FR8 KPI7,
KPI8

The Generic Ephemeral Data Store (GEDS)
excels at the efficient handling of temporary
data as being created, exchanged, and
consumed by compute tasks of a complex,
potentially multi-staged computational
workload. Efficiency is achieved by direct
integration of application buffer management
with the lowest tier (Tier 0) of the muti-tiered
GEDS.

Table 5: List of deliverables with full details of platform prototypes.

Deliverable
no.

Deliverable name Software
layer

Work
Package

D5.2 Learning methods for Infrastructure and Workload management L5 WP5
D4.2 Cloud-edge cells Release Candidate and Specifications L2 WP4
D3.3 Active Ephemeral Data Store Release Candidate and Specification L1 WP3

4.1 Platform prototypes

To avoid repetition in this deliverable, some of the early prototypes in this section has been deferred
to another deliverables as reported in Table 5. For sake of completeness, we provide an overview of
the architecture of the platform prototypes in isolation along with their specs. Table 4 summarizes

1https://metaspace2020.eu/

Page 15 of 77

https://metaspace2020.eu/

HORIZON - 101092646 CloudSkin
30/06/2024 RIA

the different prototypes along with the functional requirements that has to fulfill in the CloudSkin
platform.

4.1.1 Learning Plane (LP) prototype

The cycle of the Learning Plane data-connector starts at the submission of an application to be placed
in a certain environment (e.g. Kubernetes cluster, managed by an orchestrator). An instance of the
connector (i.e., the LP agent) is configured, indicating where to run, which application or applications
to follow, which sources of telemetry are available, which API should it use to communicate decisions
and actions to the orchestrator or scheduler, and which models should it use (or train). Then, as an
active agent, the connector triggers continuously after a configured time, to retrieve data from the
telemetry monitor, generate a forecasting or recommendation, and communicate it to the orchestrator
or scheduler.

The implementation architecture of the data-connector is shown in Fig. 3. The data-connector acts
as a LP agent in charge of providing QoS predictions and making task placement recommendations
for the orchestrator. The implementation of the agent is based upon Scanflow-k8s [14][15], where it
provides different deployments of model predictions, tracking of metadata and parameters, model
registry, and an agent framework for autonomic management. As a result, developers only need to
provide custom sensors and actuators depending on each scenario at hand. The detailed description
of the learning plane is in deliverable D5.2.

Figure 3: Implementation architecture of the data connector for the Learning Plane.

The Learning Plane works within the orchestration layer as shown in Fig. 1. On the one hand, the
data-connector agent can connect custom models (e.g., inference pipeline) to make predictions, and
policies for recommendations. On the other hand, the agent actuator can interface with a number of
different orchestrators to perform actions. For the first prototype of the data connector, a prototype
will be demonstrated for the mobility use case in section 5.1. The next steps will be expand the
Learning Plane towards the other use cases in the corresponding measures and applications.

Page 16 of 77

HORIZON - 101092646 CloudSkin
30/06/2024 RIA

4.1.2 C-Cells prototype

Scientific applications using OpenMP and MPI are common in many domains such as ML, weather
forecasting, hydrodynamics, genomics, simulation, and many other domains. To accommodate for
larger problem sizes without running out of memory, or taking prohibitively long time’s to execute,
this application scale up and out (using OpenMP and MPI) to hundreds or thousands of cores across
many nodes. In spite of their high-resource needs, scientific applications have not seen widespread
adoption in the cloud because cloud resource managers cannot change the parallelism or distribution
of these applications once they have started executing.

To enable scientific applications for the cloud, we propose using C-Cells to execute threads and
processes of multi-threaded and multi-process legacy applications written in OpenMP and MPI, so
that they can be run accross the cloud-edge continuum. In addition to continuum enablers, C-Cells
has a number of benefits just for the cloud:

• Performance: C-Cells execute as fast as native threads and processes, so openMP and MPI
application performance is the same; and

• Zero devops: C-Cells require no application changes, so the switch is transparent to user code;
and

• Live migrations: C-Cells can be efficiently migrated at runtime without breaking MPI or OpenMP
semantics.

C-Cell 1

C-Cell N

Granny
Runtime

Msg. Queues

Snap. Diffs

Code & Data

Stack

Heap

Code & Data

Stack

Heap

Code & Data

Stack

Heap

Thread Semantics Process Semantics

Figure 4: C-Cells on a VM execution within a single virtual address space. Each C-Cell has a simple
memory layout that can be used to spawn new child granules with thread or process semantics.

Fig. 4 presents an overview of C-Cells’ memory layout when executing threads and processes.
C-Cells are co-located in the same address space than the runtime, and they share the static and heap
areas depending on whether they are implementing threads or processes. More technical details are
given in deliverable D4.2.

Page 17 of 77

HORIZON - 101092646 CloudSkin
30/06/2024 RIA

4.1.3 GEDS prototype

The Generic Ephemeral Data Store (GEDS) aims at the efficient handling of temporary data as being
created, exchanged, and consumed by tasks of a complex, potentially multi-staged computational
workload. Particular attention was paid to the efficient execution of serverless workloads, where the
number of compute elements may vary greatly during runtime.

Efficiency is achieved by direct integration of application buffer management with the lowest
tier (Tier 0) of the muti-tiered GEDS. Tier 0 interfaces to node local resources through a filesystem
interface. This allows direct integration of both local DRAM and local fast storage such as NVMe
drives. Since all local GEDS objects are represented as local files, we were able to implement memory
mapping for fast object access. Frequent access to local objects is implicitly accelerated by the OS’s
page cache. With the exception of a namenode maintaining object metadata, the whole data store is
implemented as an application loadable library, which avoids running any extra storage service when
deploying GEDS. GEDS services are available native, or via Python and Java bindings. At the current
implementation status, besides Tier 0, a Persistency Tier provides node-independent, disaggregated
storage resources and object persistency, respectively. GEDS configuration allows automated (in case
of reaching configurable local resource usage limit) and application-initiated object spilling from Tier
0 into the Persistency Tier. The Persistency Tier has been integrated into GEDS through S3 API. Fig. 5
exemplifies a deployment of GEDS in a Kubernetes environment running a Python workload.

Figure 5: GEDS example deployment in Kubernetes.

The report D3.3 gives a more detailed description of the current functionality and implementation
status of GEDS.

At the current stage of the project, GEDS has been successfully integrated with the Computer-
Assisted Surgery (CAS) use case, see section 4.2.3, and also report D3.3 for a detailed evaluation. An
integration effort of GEDS with the C-Cells workload execution environment has been started.

Page 18 of 77

HORIZON - 101092646 CloudSkin
30/06/2024 RIA

4.2 Use case prototypes

Table 6: List of early use case prototypes.

Name Use case Functional Requirements Short Description
NearbyOne
Orchestration
Platform

Mobility FR3, FR4 NearbyOne instance to support the
mobility use case.

Lithops Serve Metabolomics FR1, FR2, FR3, FR4, FR7 Extends the Lithops framework with a
new library to support off-line model
serving.

Pravega
Streaming for
NCT

Surgery FR1, FR2, FR3, FR9 Provides video streaming service for AI
inference workloads for NCT.

Agriculture
dataspace

Agriculture FR5 Provides a platform for data sharing.

Granny:
Granular
Management of
Scientific
Applications
with C-Cells

Agriculture FR4, FR5, FR6 Implements scheduling and migration
policies for C-Cells executing MPI and
OpenMP. We run an MPI application to
calculate vegetation indexes.

4.2.1 Nearby Orchestration Platform

The NearbyOne orchestrator is responsible for the service onboarding and life-cycle management of
cloud-native applications and infrastructure at a global scale, and across the continuum. NearbyOne
orchestrator plays the role of the multi-cluster orchestration engine in CloudSkin.

NearbyOne solution provides mechanisms to automate and orchestrate the infrastructure located
in Castelloli, and the deployment of components, such as the monitoring stack, the learning plane,
or the mobility use case applications. In particular, NearbyOne will manage the set of sites described
in Section 4.2.1, i.e., the SE350 edge server and the two virtual machines in the private cloud (control
room). Each site has been provisioned with Kubernetes to manage containerized applications. The
NearbyOne controller itself has been deployed in a public cloud, in Amazon Web Services (AWS).
Overall, the architecture is shown in Fig. 6.

Figure 6: NearbyOne and the orchestrated infrastructure for the mobility use case.

The mobility use case application and services are the central component of the use case, and
they require the seamless integration of components provided by third-party software developers or
vendors. Application developers are not required to make any changes to their application code for

Page 19 of 77

HORIZON - 101092646 CloudSkin
30/06/2024 RIA

proper integration with the orchestration platform. All configurations are made using declarative
languages (YAML). The NearbyOne solution leveraged in CloudSkin is mainly composed of:

• The NearbyOne Orchestration Platform, the main component of the solution, is in charge of
performing all tasks related to the orchestration of applications and infrastructure.

• The Nearby Blocks are distributed components that encapsulate logic and code for different
application-specific functionalities.

• The NearbyOne Observability stack, built upon cloud-native open-source technologies, and
designed to efficiently collect, transport and aggregate telemetry information from the under-
lying infrastructure.

• The NearbyOne Northbound Interface (NBI) Orchestration API, to enable the communication
with the Learning Plane .

Figure 7: NearbyOne orchestrattion platform overview.

NearbyOne orchestration platform. Fig. 7 shows the components of the NearbyOne orchestration
platform. NearbyOne offers a full 360 view of the edge, addressing the major challenges of apps,
services, and infrastructure management through a single pane of glass and an intuitive Graphical
User Interface (GUI), i.e., the NearbyOne Management Dashboard. NearbyOne not only provides
mechanisms to automate and orchestrate provisioning of services but also offers a marketplace that
facilitates the choice and chained deployment of services and applications with only one click. The
marketplace, easily extensible, gives access to the catalog of solutions available for rapid deployment
via the NearbyOne Dashboard (see Fig. 8). Concretely, the marketplace for CloudSkin is composed
of:

• The components (Nearby blocks) of the NearbyOne observability stack (described below); and

• The Learning Plane, described in Section 4.1.1 (Nearby block under development); and

• The DL streamer, mobility use case video analytics pipelines; and

• Other example apps, such as NGINX and Torchserve applications.

Page 20 of 77

HORIZON - 101092646 CloudSkin
30/06/2024 RIA

Figure 8: NearbyOne martketplace for CloudSkin.

The NearbyOne Dashboard is used to define service deployment chains and establish the rela-
tions among them. Deployments, in the form of YAML manifests, contain not only the application
deployment information, but also its requirements and placement/configuration policies.

At the core of the orchestrator, the Orchestration Engine is the main operational component re-
sponsible for managing complex and distributed operations, enforcing eventual consistency rather
than transactions. It follows the pattern of self-healing reconciliation loops. It also includes com-
ponents that manage the policies and other dynamic behavior related to services and infrastructure
devices.

Besides the NearbyOne components, other relevant external entities necessary for the operation
are the Block, Helm Chart and Container registries, which are the repositories used to store and
access application or services artifacts and container images. In the context of CloudSkin, NearbyOne
interacts with various types of registries, each serving a unique purpose in the orchestration and
deployment of applications.

• Container Registry: This is the repository for Docker container images. NearbyOne pulls im-
ages from public container registries like Docker Hub2 or private registries depending on the
requirements and security considerations.

• Helm Chart Registry: Helm charts are used by CloudSkin’s mobility use-case to define, install,
and upgrade complex Kubernetes applications. The Helm Chart registry is where these charts
are stored. The charts in this registry reference the images stored in the Container registry.
CloudSkin mobility use case maintains its own Helm Chart registry implemented under the
Harbor open-source project3, but it can also interact with public registries that support OCI,
such as Docker Hub.

• Block Registry: Similar to the Helm Chart registry, CloudSkin mobility use case uses a Block

2https://hub.docker.com/
3https://goharbor.io

Page 21 of 77

https://hub.docker.com/
https://goharbor.io

HORIZON - 101092646 CloudSkin
30/06/2024 RIA

registry, too. The Block registry is where the NearbyOne Blocks (see below) are stored, which
are higher-level components encapsulating a service or application. Each Block references a
Helm chart and, in turn, container images. Mobility use case Block registry is also implemented
under Harbor.

By leveraging these registries, NearbyOne ensures a smooth and efficient deployment process, en-
abling rapid scaling and updating of its services and applications. It is important to note that ap-
propriate access controls and security measures are implemented to protect the integrity and confi-
dentiality of the data in these registries, such as robot accounts for the CloudSkin mobility use case
developers.

Nearby blocks. In NearbyOne, third-party software components onboarded into the platform to
operate services deployment are named Nearby Blocks or simply Blocks. Each Nearby Block con-
tains references to the application logic (service containers in CloudSkin), and they are encapsulated
with a set of auxiliary components that provide the means for the application to be effectively man-
aged. Orchestration resources follow a similar syntax to Kubernetes manifests, and Nearby Blocks
are packaged and follow a templating syntax similar to Helm charts.

Once the orchestration resources are defined, the orchestrator interact with the underlying Ku-
bernetes infrastructure to deploy the edge services. The orchestrator’s Southbound Interface (SBI)
plays a crucial role in connecting the orchestrator with the Kubernetes infrastructure. Positioned on
the orchestrator’s side, the SBI acts as the bridge through which the orchestrator communicates its
decisions, intents, and orchestrated actions to the Kubernetes clusters. It provides a standardized and
simplified interface, shielding the orchestrator from the complexities of the underlying infrastructure
and offering a unified way to convey instructions. This abstraction ensures smooth interoperability,
allowing the orchestrator to express its requests without getting tangled in the specific details of the
Kubernetes clusters.

Within the SBI framework, the orchestrator’s Kubernetes API client module initiates requests,
defining desired state changes based on received intents and orchestrated decisions. These requests
flow through the SBI to reach the Kubernetes API server module, hosted on the master node of
each Kubernetes cluster. The server module processes these requests, making changes in the state
of Kubernetes resources according to the orchestrated decisions, such as scaling up or down pods,
modifying configurations, or implementing other resource adjustments. Importantly, the Kubernetes
resources are deployed using the Helm chart packaging and deployment method, adding a layer
of simplicity and efficiency to the orchestration process. In essence, the SBI acts as the orchestra-
tor’s communication gateway, enabling dynamic orchestration by translating high-level intents into
actionable commands within the Kubernetes infrastructure, promoting a responsive and adaptive
orchestration framework.

The NearbyOne observability stack. Setting up an observability stack on deployed Kubernetes
clusters can enable the collection of performance metrics, tracking of system health in application or
device level and even the detection of anomalies in real-time. An observability stack consists of tools
for real-time system metrics scraping, data storage (short-term or long-term) and user-friendly visu-
alizations. These monitoring technologies not only offer insights into the inner workings of Kuber-
netes clusters but also enable proactive problem-solving, efficient resource allocation, and ultimately,
enhanced reliability of deployed applications.

The main open-source tools employed for the observability stack deployed on Cloudskin are
described below (see Fig. 9).

• Prometheus4 is a monitoring and alerting tool that acts as the main monitoring component in
the stack. Its seamless integration with Kubernetes makes it a popular choice for monitoring
containerized environments. A large number of Prometheus exporters have been developed
for the collection of telemetry time-series data of various sources.

4https://prometheus.io/

Page 22 of 77

HORIZON - 101092646 CloudSkin
30/06/2024 RIA

Figure 9: The NearbyOne observability stack deployed for CloudSkin.

• Grafana5 software implements an analytics and visualization platform that turns time-series
data into insightful dynamic graphs. It supports a wide range of data backends, including
Prometheus, Thanos, Graphite, Elasticsearch, etc., making it highly versatile for monitoring
and observability use cases.

• Thanos6 extends the capabilities of Prometheus in terms of scalable, long-term storage and
provides a global querying endpoint. With its seamless integration with Prometheus and other
monitoring tools, Thanos simplifies the management of large-scale metric data while providing
powerful querying capabilities for gaining insights across distributed environments.

• MinIO7 is a high performance, object storefor cloud-native and containerized environments,
offering scalability, resilience, and simplicity in managing data. In observability use cases it can
serve a the telemetry repository of the various scraped metrics.

Taking into consideration the multi-cluster setup of Cloudskin, the proposed architecture divides the
clusters into a single Observer cluster and multiple Observees, as shown in Fig. 9.

The Observer cluster (the cloud VM #2 in this case), acts as a control room for the Observability
stack, where each of the Observee clusters, that is, the SE350 edge servers referred to as the cloud
VM #1 and the cloud VM #2, expose their short-term monitoring data scraped by Prometheus. The
Thanos API deployed on the Observer cluster can respond to queries targeting each of the Observee
clusters and the Observer itself, while also storing long-term data via MinIO. Consequently, the
data is only stored in the Observer cluster, making it a viable solution when monitoring resource
constrained edge clusters.

Both deployment and configuration of the Observability stack are seamlessly available through
the NearbyOne orchestrator using NearbyOne Blocks. Concretely,

• AnObserver monitoring block consisting of integrated Prometheus, Thanos, MinIO and Grafana;
and

• An Observee monitoring block with Prometheus and a Thanos sidecar connection,
5https://thanos.io/
6https://grafana.com/
7https://min.io/

Page 23 of 77

HORIZON - 101092646 CloudSkin
30/06/2024 RIA

are available in the user-friendly NearbyOne orchestrator’s dashboard, illustrated in Fig. 8. The
NearbyOne Blocks can easily be deployed to the desired cluster with configurable options regarding
the storage capacity, retention policies and frequency of the collected metrics.
The NearbyOne Northbound Interface (NBI) Orchestration API. The NBI orchestration RESTful
API facilitates AI-driven orchestration and management of services and applications, providing dy-
namic service management, automation, and optimization across digital infrastructures. This com-
prehensive API offers endpoints to automate processes that require human intervention via the Near-
byOne dashboard. Concretely, the NBI orchestration API will enable the communication between the
learning plane (see Secction) and the orchestrator, to automate processes, such as service migration,
based on AI decisions.

The NearbyOne NBI API is under development, following OpenAPI Specification version 3.0.38.
It will provide a robust interface for orchestrating service chains across cloud and edge computing
environments, facilitating deployment, management, and updates of service chains to ensure dy-
namic, efficient operations across diverse infrastructure setups. Fig. 10 summarize the NearbyOne
API endpoints.

8https://swagger.io/specification/v3/

Page 24 of 77

https://swagger.io/specification/v3/

HORIZON - 101092646 CloudSkin
30/06/2024 RIA

Figure 10: NearbyOne service orchestration API (OpenAPI definition screenshot).

Page 25 of 77

HORIZON - 101092646 CloudSkin
30/06/2024 RIA

4.2.2 Lithops Serve

In this section, we describe Lithops Serve, a brand new library developed in this project that extends
the Lithops9 serverless data anlytics framework to support off-line model serving. Lithops Serve has
been developed to address the needs of the metabolomics use case. See Section 5.2 for further details.

Resource
Provisioner

provide

Batch
Dataset queue ds

HTTP
Endpoint

Kubernetes
Cluster
On premises

EDGE

Lithops Serve

invoke

Cloud Functions

Transform Inference

Batch
Manager

Batch

Learning
Plane

Executor

Download

Transform Inference

Executor

Download

dsdsds

Orchestrator

CLOUD

CLIENT

TEE

GPU

Figure 11: Lithops Serve architecture.

Fig. 11 shows the software architecture of the Lithops Serve PoC. The new model serving system
supports the entire DL pipeline for image classification. That is, image loading, transformation, and
classification. The PoC follows a declarative programming paradigm, where the code of each task in
the pipeline is decorated with a Python decorator of type @task. This decorator serves to indicate how
each task should execute, for instance, by declaring the degree of parallelism. This is important since
tasks may be run on a multi-core architecture and the system should not disallow tasks to leverage
multiple CPU threads. A replica of the pipeline is then run within an Executor instance. The Executor
instance can be of two types: 1.- A serverless function; or 2.- A container. The number of Executor
instances of each type is managed by the Resource Provisioner, who has the power to scale up and
down the number of Executor instances at any given time. The Resource Provisioner is centralized
in a cloud server to avoid complex coordination between sites.

A key component of Lithops Serve is the Batch Manager, which is responsible for the distribution
of the batches images across the running Executor instances. The distribution of images is realized
dynamically. This is particularly beneficial because some Executors instances may boot up earlier
than others or be faster. With the static scheduling of batches, the faster Executors may finish ahead of
time and remain idle for a long time. By dynamically load-balancing the batches, the Batch Manager
maximizes resource utilization, saves cost and minimizes end-to-end inference latency. Additionally,
it provides fault tolerance by monitoring batch progress and reassigning tasks that fail, or take too
long to complete, ensuring robust and efficient operation.

Lithops Serve is ready to integrate with the Learning Plane to optimize resource provisioning,
task placement, etc.

9https://lithops-cloud.github.io/

Page 26 of 77

https://lithops-cloud.github.io/

HORIZON - 101092646 CloudSkin
30/06/2024 RIA

4.2.3 Pravega Streaming for NCT

In this early prototype, we have deployed a cluster in Dell’s Cork lab with to support a PoC for the
NCT use case in CloudSkin (see Fig. 12). The PoC focuses on containerizing AI inference models.
This is a departure from the existing operation model that data scientists at NCT use nowadays (i.e.,
script-based models, running AI inference directly on servers). Instead, we provide the necessary
tooling for embedding AI inference models in docker containers, making them easy to share and
deploy, and connecting them with Pravega [16, 17] through GStreamer [18, 19]. Such a containerized
model for running AI video inference on top of Pravega streams does not only mean a productivity
boost for managing models and video stream data, but also is more aligned with the cloud-edge
continuum model in which applications and data may stretch across heterogeneous infrastructures
(see Section 5.3).

Figure 12: Deployment of Pravega and NCT video stream analytics in Dell’s Cork lab.

As shown in Fig. 12, our PoC for the CAS use case consists of several components. Specifically,
the main system for ingesting, storing, and serving video data is Pravega. Like GEDS, Pravega is a
tiered storage system for data streams that exposes the stream abstraction: a unbounded sequence of
bytes that achieves durability, consistency, and good performance. In a nutshell, the architecture of
Pravega consists of:

• Controller instances, which handle metadata and stream lifecycle operations; and

• Segment Store instances, which take care of IO; and

• client libraries.

A major point of Pravega is that Segment Stores provide automatic storage tiering. First, stream
data is ingested in a low-latency, durable write-ahead log (WAL), and then the system automatically
coalesces stream data for moving it to a high-throughput long-term storage (LTS) service. Clearly,
this reduces the burden of data management on NCT data scientists, as they do not have to manually
move surgery videos from local machines to external storage.

This PoC also integrates Pravega with IBM GEDS for smart storage tiering (see deliverable D3.3).
In a nutshell, GEDS transparently enhances the storage tiering capabilities of Pravega. Concretely,

Page 27 of 77

HORIZON - 101092646 CloudSkin
30/06/2024 RIA

GEDS helps Pravega to keep ingesting video streams even under network outages with the external
storage service storing stream data (e.g., object storage). This makes the streaming infrastructure
more resilient to potential network unreliability across the cloud-edge continuum, without impacting
real-time video analytics during surgeries. Our PoC also provides means for storing and visualizing
multiple types of metrics about Pravega. In addition to help cluster administration, such metrics
can be an interesting substrate for building intelligent resource management. Specifically, this PoC
is expected to be integrated with the Learning Plane for taking auto-scaling decisions regarding
the streaming infrastructure [20] (see deliverable D5.2). Moreover, the foundation of this PoC for
containerizing AI inference in NCT may pave the way to explore confidential computing models in
health-related data (see deliverable D4.2).

Finally, our PoC supports other important video-related features for demonstration purposes. For
example, we provide containers that can mimic real video cameras in surgery rooms and a service
that helps visualizing GStreamer video streams via HTTP (Pravega video server).

Page 28 of 77

HORIZON - 101092646 CloudSkin
30/06/2024 RIA

4.2.4 Agricultural Dataspace

At CloudSkin, we have built an edge dataspace to facilitate the sharing and processing of agricultural
data.

Initially devised for the edge, data processing has made it necessary to adapt the infrastructure
to a hybrid scenario, offloading part of the processing to the continuum. This integration will allow
instances to be created dynamically for the execution of intensive tasks, creating a hybrid execution
scenario with certain tasks running in the cloud.

In each architectural layer, the most appropriate technology or set of technologies has been chosen
for the purposes of the experiment:

• Dataspace development. It is an information management platform for the creation as well as
exchange of datasets and projects related to the agricultural sector.

– In its design, Backpack has been selected. It is a management package designed for the
Laravel framework, which provides a series of pre-designed tools and functionalities that
accelerate the development process, allowing efforts to be put on the analysis of the needs
of the sector.

– Backpack inherits its security features from Laravel, offering threat protection against SQL
injections and Cross-Site Scripting (XSS).

– Backpack’s modular structure makes it easy to add and modify features. This structural
advantage has been especially taken into account due to the need for flexibility to adapt to
required changes, during the integration, evolution and analysis processes of the platform.

• Development of the public interface. HTML has been chosen for the landing page related to
the general information of the project, complemented with CSS and JavaScript for its design.

– The low execution latency of native HTML improves the user experience by reducing load-
ing times and allowing fluid navigation.

– Additionally, it is compatible with all modern browsers and devices, ensuring that it is
accessible to all users regardless of the platform used.

– Allows you to easily integrate other technologies and frameworks, allowing the customiza-
tion and implementation of responsive designs.

• Infrastructure and deployment. Docker.

– Docker containers ensure that applications work consistently in any environment, whether
development, test, or production.

– Allows you to scale services efficiently by creating multiple container instances. This is
essential to dynamically handle increases in demand and maintain optimal performance.

– Each container operates in isolation, improving security by reducing the risk of conflicts
between applications and limiting the scope of potential vulnerabilities.

– Easily integrates with “orchestration” tools like Kubernetes, allowing you to automate
deployments, resource management, and failovers.

The defined architecture facilitates the analysis and execution of performance experiments and
adaptation to the continuum. In the hybrid scheme, it will be possible to transfer to the continuum,
parts of the heavier functionalities related to data management, allowing by this way that instances
can be raised dynamically for the execution of intensive tasks. Fig. 13 provides an overview of the
dataspace architecture.

The container where the data space is implemented executes the processes that allow users to de-
fine the meta-information, load the datasets, and generate access links to the dataset information. On

Page 29 of 77

HORIZON - 101092646 CloudSkin
30/06/2024 RIA

Figure 13: Dataspace architecture.

the other hand, C-Cells technology deployed with Kubernetes as well will serve as a the computation
platform for scientific legacy code across the continuum.

Within the project, experiments are contemplated that require the processing of large bursts of
small tasks, where the infrastructure improvements of WP3 and the container-like abstraction of
WP4 will be of great help. The architecture also includes the C-Cells mechanisms that will provide
these improvements. We will also explore the application of AI at the edge to classify crops from the
Sentinel-2 time series.

Once we have developed a dataspace on which to manage the datasets, we will focus the second
half of the project on finishing the second experiment (water use footprint), where we will implement
an analytical application to measure the water use footprint by combining information from sensors
(humidity, well water level, etc.) with Sentinel-2 multispectral images and LiDAR data. Part of this
pipeline, which is the calculation of vegetation indexes, is currently built with Granny as described
below.

New datasets will also be incorporated in this second phase on which tests of use and adaptation
of the dataspace to the computational needs of the data will be carried out.

4.2.5 Granny: Granular Management of Scientific Applications with C-Cells

In D4.2 we present Granny, a distributed runtime that uses C-Cells to transparently run unmodified
MPI and OpenMP applications. Granny builds on top of the C-Cells prototype and implements a
number of scheduling and migration policies to improve the execution of scientific applications in
the cloud. Fig. 14 presents a simplified example of a de-fragmentation policy to improve performance
of MPI jobs by improving locality as resources in the cluster become available.

In our evaluation in D4.2, we present three different policies: 1. A de-fragmentation policy to
change the distribution of MPI jobs; 2. A policy to change the scale of OpenMP applications to use
idle CPU cores, and 3. A fault-tolerance policy to run applications on top of cheap, intermittently
available, spot VMs.

Page 30 of 77

HORIZON - 101092646 CloudSkin
30/06/2024 RIA

VM A

Planner

VM B

6 4

VM A

Planner

VM B

6 46

2 4

6

VM A

Planner

VM B

66

(a) New (b) Completed (c) Defragment

Figure 14: Management using Granny’s distributed runtime. Each Granny instance runs on a VM
and controls a variable-sized pool of C-Cells. A planner defragments applications to increase locality
when other applications have completed.

In this deliverable, we show the applicability of Granny by executing an application from the
agriculture domain, a calculation of vegetation indexes (e.g., NDVI) from geospatial images using
MPI, and migrating it across the cloud-edge continuum.

Page 31 of 77

HORIZON - 101092646 CloudSkin
30/06/2024 RIA

5 Use cases

Table 7: Summary of the usage of AI in the use cases at M18.

Use case AI usage Models
Mobility

• QoS-based scheduling and resource
provisioning of a video analytics application in
cloud-edge environments.

• QoS-based migration of a video analytics
application in cloud-edge environments.

AL4DL is used to detect the
application patterns;
Transform-based model is being
explored to generate the workload
characteristics; LSTM is trained to
predict the nodes and applications
behavior.

Metabolomics

• Mitigation of cold starts; and

• Smart pre-allocation and deallocation of
on-premise resources that are slow to boot up
and reclaim (e.g., GPU-enabled containers with
large serving libraries).

Still under investigation, models will
range from Long Short-Term
Memory (LSTM) networks that
enables to remember or forget
information for long periods, as well
as simpler and faster to train models
such as Long-Short Term
Histograms (LSTHs) [21].

Surgery

• Containerized execution of computer-assisted
surgery AI models; and

• Predictive auto-scaling of streaming
infrastructure.

NCT is using various models for
running AI inference in Docker
containers instead of using scripts.
We are using LSTM and CNN
models trained with NCT surgery
room utilization traces for
auto-scaling Pravega instances.

Agriculture

• Automatic resource scaling management,
allowing processing of entire datasets; and

• Live migration of geospatial tasks.

The specific models are still under
investigation.

Table 8: Summary of use cases KPIs.

Use case Continuum resources
(Cloud, edge, ...)

KPIs
(KPIs prefixed with “uc” mean use case-specific KPIs
(e.g., ucKP1)

Mobility CNX SR650 (cloud); CNX SE350
(edge) both with Kubernetes
enabled

KPI1, ucKPI1:QoS; KPI2, ucKPI2:Off-loading

Metabolomics Amazon Web Services (cloud);
Kubernetes on-prem (edge)

KPI9; ucKPI1:Latency; ucKPI2:Throughput;
ucKPI3:Performance/$; ucKPI4:Cost($);
ucKPI5:AnnotateLatency; ucKPI6:AnnotateCost($);
ucKPI7:Scalability

Surgery On-premises cluster (edge) with
external storage (core); Amazon
Web Services (cloud)

ucKPI1:Productivity; ucKPI2:Latency; ucKPI3:Reliability;
ucKPI4:Scalability; ucKPI5:Confidentiality; KPI3; KPI6;
KPI7; KPI8;

Agriculture Docker container at KIO Virtual
Data Center

ucKPI1:Apdex Score; ucKPI2:Time to First Byte (TTFB);
ucKPI3:C-Cell Execution Overhead;
ucKPI4:Cloud-Continuum Execution Overhead

Page 32 of 77

HORIZON - 101092646 CloudSkin
30/06/2024 RIA

Table 9: Summary of use cases experiments and benchmarks.

Use case Experiments Datasets Benchmarks
Mobility Experiment 1: Application

placement on edge and Cloud.
Application QoS data(i.e.,
fps, latency), Application
and cloud-edge resource
usage data(i.e., CPU,
memory usage) both
15/05/2024-05/06/2024

Benchmark 1: Application
and resource usage data

Metabolomics Experiment 1: Latency-price
relation by dataset size; Experiment
2: Timeline comparison between
Lithops Serve functions and ECS
containers; Experiment 3: Optimal
number of functions in terms of
throughput and performance/$;
Experiment 4: Optimal batch size
in terms of throughput and
performance/$.; Experiment 5:
Early sort latency comparison
between a VM and serverless
functions.; Experiment 6: Early sort
cost comparison between a VM and
serverless functions.

Objective 1:
2024-02-XX.cloudwatch.log;
2024-02_daemon.log;
small.0.5k; small.1k;
medium.3k; medium.6k;
medium.8k; medium.15k;
large.30k; large.35k;
large.60k.

Objective 2:
X089-Mousebrain (scale
factors 1x (small), 3x
(medium), 7x (large) and
35x (xlarge))

Benchmark 1: Optimal
number of executors in
terms of latency and cost;
Benchmark 2: Early
results of Kubernetes
backend with CPUs.;
Benchmark 3: Early
results of Kubernetes
backend with SCONE;
Benchmark 4: Throughput
and bandwidth
capabilities of AWS S3.;
Benchmark 5: Early sort
performance results of
serverless functions on a
scaled up dataset.

Surgery Experiment 1: Deployment of
containerized AI models and data
management; Experiment 2:
Confidential execution of NCT AI
models

Cholec80 dataset [22],
GStreamer videotestsrc

Benchmark 1: End-to-end
video frame latency
measurement via
GStreamer; Benchmark 2:
Induce unavailability of
long-term storage while
ingesting video data;
Benchmark 3: Generate
fluctuating video
streaming workload and
evaluate auto-scaling.

Agriculture Experiment 1. Validation of the
agricultural Dataspace; Experiment
2. Continuum integration analysis.

Agricultural dataset
(08/11/2021 – 07/06/2023).
Environmental datasets
(08/11/2012 - 07/06/2023),
(01/01/2023 - 30/09/2023),
Infrastructure dataset
(04/12/2023 - 06/02/2024)

Benchmark 1: Realistic
data from the agricultural
environment Benchmark
2: Realistic environmental
data Benchmark 3:
Realistic infrastructure
usage data

5.1 Use Case: Mobility

5.1.1 Overview

The mobility use case focuses on the distribution of load across cloud-edge environments, on com-
puting nodes with different capabilities and properties, such as high-performance vs. low-power,
proximity to data and users vs. close to computing power in the cloud, scalability through nodes vs.
distribution across devices, etc. For this reason, the use case proposes a scenario for road-cameras
predictive video analytics (PVA), with computing availability next to the road (edge nodes) and next
to high-performance (cloud nodes), where edge nodes have lower computational power but are close
to cameras and users, while cloud nodes will have higher performance but far from data sources and
consumers.

There are two experiments at the mobility use case:

• Experiment 1. Application placement on edge and cloud: The first experiment will focus on

Page 33 of 77

HORIZON - 101092646 CloudSkin
30/06/2024 RIA

deploying an AI-based VA application for vehicle detection using real-time video data from
street cameras, the target application can be deployed on the edge and cloud.

• Experiment 2. Intelligent application migration between edge and cloud: A second test will
consist of migrating dynamically the VA application across edge and cloud resources, according
to the client QoS requirements and infrastructure needs (e.g., energy consumption).

Currently, Experiment 1 has been completed and tested in the CNX infrastructure with realistic
data from the circuit camera. Real data has been retrieved from the current testbed in order to train a
model for intelligent application migration for Experiment 2.

5.1.2 Status of the use case at M18

Up to M18, the major efforts of the use case have been devoted on the video-analytics application
deployment and the testbed, to enable “Experiment 1: Application placement on edge and cloud”.
On the one hand, we have been working on the application, in terms of enabling it for video analytics
for car detection and testing it in the cloud and edge. For the application, we accomplished:

• Application can properly do video analytics on car camera stream; and

• Application can be placed in the cloud or offloaded to the edge.

On the other hand, we needed to create cloud edge testbeds, with K8s platform running on them.
Moreover, we needed to create components within the cloud and edge K8s platform for monitoring
(NBC’s monitoring), planning (BSC’s Learning Plane) and execution (NBC’s orchestration). At the
time of this deliverable, we have achieved the following:

• Application can be placed by NBC’s orchestration platform on infrastructure; and

• Application and infrastructure metrics can be extracted from the aggregated NBC’s monitoring
stack; and

• Learning Plane and orchestration service is properly developed. Currently, the Learning Plane
is being tested in BSC’s K8s cluster, and the orchestration service is being tested as an NBC’s
Cloudlet.

Next steps. As the next steps for this use case, we will work on the integration of the Learning Plane
with the NBC’s orchestration service to advise the migration of the application in a dynamic envi-
ronment. Also, we will explore more QoS metrics such as energy to guide the intelligent workload
placement and resource provisioning.

5.1.3 Why this use case needs the compute continuum?

The adoption of a cloud-edge continuum is crucial for PVA because it offers a balanced approach to
processing the application that combines the benefits of both edge computing and cloud computing.

• Low-latency, bandwidth saving and privacy benefits from edge computing: edge computing
enables processing the video analytics data closer to the source, which reduces the time taken
for analytics and could get real-time results. Additionally, edge computing reduces video data
transmission, which reduces bandwidth requirements and data transmission costs and also
protects personal or sensitive video data from being transmitted to the cloud.

• Scalability and flexibility of cloud computing: cloud computing provides elastic resource al-
location and easily scales up and down sufficient computing resources. For instance, when
PVA has high user demand, it can request computation resources during peak hours. High-
performance computing resources power in the cloud can accelerate the complex processing of
the video data.

• Reliability: Utilizing a cloud-edge continuum allows for the dynamic deployment and migra-
tion of PVA applications across distributed resources based on geographical needs, ensuring
efficient response to user requests and events.

Page 34 of 77

HORIZON - 101092646 CloudSkin
30/06/2024 RIA

5.1.4 Where AI helps in this use case?

Since cloud-edge continuum enables the dynamic deployment and migration of PVA applications
across distributed resources, intelligent resource management is critical for application placement. To
achieve this, the Learning plane will host and provide machine learning models for decision making
on which placement is preferred for video-analytics application, considering the quality of service
that can be provided in the different locations according to the capabilities and requirements for the
application. The provided underlying technologies for this will be the data connector implementing
the predictors and recommenders, using Scanflow as the ML engine, and Kubernetes + NearbyOne
for orchestration and scheduling.

5.1.5 Experiments, KPIs and benchmarks

Table 10: Summary of use case-specific KPIs for Mobility.

ucKPI Description
ucKPI1:QoS Orchestration of edge apps with matching cloud performance (1x).
ucKPI2:Off-loading AI video-analytics in the edge with accuracy matching HPC environments

(1x) and reduction of cloud off-loading (>50%).

This use case conducts several experiments to show the use case KPIs given in Table 10. All the
demo and experiments are running in testbed described in section 6.1. On the one side, we conducted
an experiment for PVA application placement on our testbed to demonstrate application offloading
and performance KPIs, and on the other side, we used the testbed for benchmarking and collecting
data.

The objective of the current demonstration, experiment and benchmark is to show: 1. Application
can properly do video analytics on a car camera stream. 2. Application can be placed by the NBC’s
NearbyOne orchesration platform on infrastructure. 3. Application and infrastructure metrics can be
extracted from the aggregated monitoring stack. 4. Application can be offloaded from cloud to the
edge (KPI2:usKPI2) 5. Application offloaded to the edge can keep the performance(i.e., fps) as in the
cloud, and maintain the latency constraints (KPI1:usKPI1).

5.1.6 Early results

Experiment 1: Application placement on edge and cloud. This very first experiment pursues the
successful deployment of a video analtyics (VA) application on the edge and the cloud. In this test, we
deployed a VA application through NBC orchestration platform on CNX infrastructure. We enabled
fully offloading of the application from the cloud to the edge.

Fig. 15 shows the performance of the VA application measured as frames-per-second (fps) both on
the cloud and edge. As shown in this figure, our edge deployment preserves the latency constraints
of 100 ms as corroborated in Fig. 16.

Edge VA apps match the same performance as cloud VA apps; so KPI1/ucKPI1 is fulfilled. That is,
the average fps is the same as in the cloud (Fig. 15), subject to a pipeline computing latency of less
than 100 ms as verified in Fig. 16.

Cloud apps can be fully offloaded to the edge, and the same model reports the same accuracy; so
KPI2(40%)/ucKPI2 is fulfilled.

Benchmark 1: Application and resource usage data. The benchmark consists of collecting edge
and cloud data towards learning multi-dimensional time-series for the future recommendations of
application migration in a dynamic environment. In this benchmark, we explore VA applications and
use a stress application to create dynamic environments. For both edge and cloud, we benchmark its
resource consumption, as well as the application resource usage and performance (as shown in Fig
17 - Fig 22).

Page 35 of 77

HORIZON - 101092646 CloudSkin
30/06/2024 RIA

Figure 15: VA application camera video stream
avg fps.

Figure 16: VA application real-time pipeline
computing latency.

Figure 17: VA application camera video stream
avg fps.

Figure 18: VA application real-time latency.

Figure 19: VA application CPU usage. Figure 20: VA application memory usage.

Figure 21: Cloud node CPU usage. Figure 22: Cloud node memory usage.

Page 36 of 77

HORIZON - 101092646 CloudSkin
30/06/2024 RIA

5.2 Use Case: Metabolomics

5.2.1 Overview

A full description of the Metabolomics use case can be found in D2.1. In a nutshell, this use case poses
two objectives:

1. Objective 1. AI-enabled optimization of the off-sample ion image service.

METASPACE integrates a service for recognition of off-sample mass spectrometry images with
deep learning. Operational on AWS, the existing off-sample service experiences significant idle
periods. The workload fluctuates steeply from hour to hour and the existing container-centric
implementation of the service suffers from high latency due to long scaling out times. It requires
a container to always remain active with the service auto-scaling containers to keep up with the
demand.

Figure 23: Distribution of dataset sizes in terms of number of images in 2023.

In summary, the goal is to re-implement the off-sample service such that can rapidly scale
up to ensure low latency and scale down to zero in the idle periods to save money.

In addition, the new service should be able to run on-premise edge resources with accelerators,
as well as to confidentially run inferences using enclaves like Intel SGX to protect confidential
datasets of private companies.

2. Objective 2. AI-enabled optimization of stages with data redistribution in the METASPACE
molecular annotation pipeline.

In this objective, we aim to optimize the metabolite annotation pipeline itself. Today, METAS-
PACE uses a hybrid implementation combining a large EC2 instance with cloud functions -
managed by the Lithops serverless framework. Such hybrid VM-Lithops implementation has
been used in production since March 2022 and has enabled a significant increase in scalability.
Unfortunately, there is still a bottleneck due to the physical limitations of VMs, namely in the
case of a sort stage that runs entirely within the VM instance. Memory prevents METASPACE
from processing datasets larger than 250 GB.

The objective is to remove the VM scalability bottleneck, enabling scaling up to hundred-
of-GB datasets through an AI-enabled provisioning of serverless functions.

For both objectives, we will base our novel solution upon serverless technology as a cornerstone
for resource pooling and rapid elasticity. This will enable the system to respond quickly to workload
variations without incurring high latency and large operational costs. We will leverage the Learning
Plane to optimize the operation of the service.

Page 37 of 77

HORIZON - 101092646 CloudSkin
30/06/2024 RIA

5.2.2 Status of the use case at M18

Up to month 18, much of our efforts have focused on Objective 1. We have already started to tackle
the challenges behind Objective 2 by:

• Examining the code and quantifying the bottleneck.

• Studying how the large EC2 instance can be efficiently replaced by a fleet of serverless func-
tions. Disaggregated storage systems, such as blob storage services, can be used to exchange
intermediate data between functions.

• Implementing a preliminary distributed sort operation over serverless functions that would
eventually replace the in-place VM-based sort.

Early results of our prior analysis can also be found later in this deliverable.
To accomplish Objective 1, we have extended the Lithops10 framework to support (batch) model

serving. The new library is called Lithops Serve. At the time of this writing, Lithops Serve works with
AWS Lambda, the Function-as-a-Service (FaaS) platform at AWS and is able to process large datasets
in less than 1 minute. The new library upgrades Lithops by installing the code, dependencies and
predictive model in a Docker Image.

In the last months, a Kubernetes (K8s) backend was added and battle-tested. The K8s backend is
also a critical feature of Lithops Serve in order to enable on-premise edge clusters to the continuum.
Very interestingly, the K8s cluster may be equipped with GPU acceleration to perform low-latency
inferences.

Further, the executor instances running in a K8s backend may be armored by Intel SGX, powered
by SCONE [4]. SCONE is able to lift-and-shift predictive models in a Docker Image effortlessly. The
advantage is two-fold: cold start is mitigated and confidential execution is guaranteed by Intel SGX
enclave without changing the framework (i.e., PyTorch, Tensorflow). This work is ongoing, since it
could not be started until Lithops Serve was ready for K8s deployments in the last two months.

5.2.3 Why this use case needs the compute continuum?

The compute continuum is essential for this use case due to the dynamic and unpredictable nature of
the workload, where the dataset size in terms of number of images can vary +100 times as shown in
Fig. 23.

The METASPACE off-sample service experiences fluctuating workloads throughout the day, with
periods of high activity followed by long idle times. This variability in workload demands a compute
solution that can scale resources up and down quickly to avoid both over- and under-provisioning.
To meet this challenge, we use the Lambda service in the AWS cloud to run inferences at scale. Due
to its rapid auto-scaling and cost-efficiency advantages, serverless functions will be the workhorse
behind Lithops Serve.

However, commercial serverless platforms such as AWS Lambda lack the support of accelerators
and therefore cannot provide low-latency services for large-sized datasets. Similarly, they do not
support confidential computing with Trusted Execution Environments (TEEs). For these powerful
reasons, this use case will combine serverless functions running in the cloud with on-premise edge
resources to achieve:

• Scalability: The intelligent split between the cloud and edge will enable the elastic and low-
latency processing of workloads by adjusting the pool of resources.

• Cost-efficiency: The new solution will be cost-effective by tapping into the pay-per-use model
of serverless functions and the available resources on the edge with hardware acceleration (e.g.,
GPU).

10https://lithops-cloud.github.io/

Page 38 of 77

https://lithops-cloud.github.io/

HORIZON - 101092646 CloudSkin
30/06/2024 RIA

• Confidential execution: In the case that a dataset contains sensitive images, e.g., from a private
company such as AstraZeneca, the new solution will provide a secure enclave at the edge for
image classification while keeping the images encrypted and confidential, even from the host
system.

5.2.4 Where AI helps in this use case?

AI plays a crucial role in optimizing the off-sample mass spectrometry image recognition service at
two levels:

1. Cold start mitigation. Cold starts can cause significant performance degradation for serverless
functions and containers. Especially for inference serveless functions, the impact is important
because it may take much more time to download and load the DL models and serving libraries
such as Pytorch than the time to process a medium-sized batch of images.

2. Optimal resource provisioning. Another recurrent problem is to find the optimal “sweet spot”
between the public cloud and on-prem edge resources. The perfect cocktail can vary depending
upon the KPI to optimize: end-to-end latency, cost, or both. For instance, if edge servers were
equipped with GPUs, a larger proportion of edge servers might be convenient in order to meet
a stringent latency KPI.

By analyzing historical data and patterns, AI can help to train a model that can forecast periods
of CPU-intense activity. Armed with this predictive prowess, the platform will be able to anticipate
spikes in activity and proactively allocate resources accordingly. By dynamically adjusting the pool
of warm functions and on-premise resources by forecast projections, the platform will be able to:

• Mitigate cold starts; and

• Pre-allocate and deallocate on-premise resources that are “slow” to boot up and reclaim (e.g.,
Docker containers),

in order to rapidly adapt to the demand. The idea is to maximize the number of serverless executors
in warm state. When an executor is in a warm state, it is pre-initialized with the classification model
and dependencies loaded, meaning it is ready to execute code without further ado.

Concerning Objective 2, AI can also play a vital role. Given a dataset of a number of .imzl files,
the right number of serverless executor is another hyperparameter. An overprovsioning of serverless
executors can “skyrocket” costs and lead to severe performance degradation due to the saturation of
the intermediate storage system. AI can act as an data-driven oracle for this stage of the METASPACE
pipeline, pre-provisioning the optimal number of of parallel executors that, for instance, optimize the
cost-performance ratio.

5.2.5 Experiments, KPIs, and benchmarks

Objective 1. A series of experiments and benchmarks were carried to evaluate use case-specific KPIs
listed in Table 11 corresponding to the off-sample service (ucKPI1-4). In Section 6.2, we provide the
description of the different testbeds: the pre-project ECS-based solution in production, and the cloud
and on-premises egde testbeds for Lithops Serve.

Several daemons are in charge of data collection. The most important is the update daemon that
registers the dataset start and end times. Inside each container, there is a parallel process that stores
logs in AWS CloudWatch (the AWS service for monitoring and log collection). All these logs are then
extracted after a dataset was classified.

Lithops Serve includes a new trace collection system. Concretely, each executor logs the execution
details per batch and per image. Image statistics include the time spent in the load, transformation,
and prediction stages. Besides, Lithops has its own log collection system that records function request
times, start times, end times, and result fetching times. Together, these logs provide extensive data
for plotting and statistical analysis.

Page 39 of 77

HORIZON - 101092646 CloudSkin
30/06/2024 RIA

Table 11: Summary of use case-specific KPIs for metabolomics.

ucKPI Description
ucKPI1:Latency Curtail classification latency by a factor of 10 relative to the AWS ECS-based

METASPACE solution.
ucKPI2:Throughput Achieve a throughput (images/s) that is at least 10 times greater than the

existing AWS ECS solution.
ucKPI3:Performance/$ Achieve at least 2x the performance per dollar compared to the current ECS

implementation.
ucKPI4:Cost($) Ensure that the total cost of processing each dataset does not exceed 3x the

cost of the ECS implementation.
ucKPI5:AnnotateLatency Achieve a speedup of at least 1.5X in the sort stage of the annotation pipeline.
ucKPI6:AnnotateCost($) Ensure that the cost of the end-to-end annotation pipeline does not grow

more than a 200% despite the use of expensive serverless resources.
ucKPI7:Scalability Enable the annotation of datasets of 500+ GB.

The system will be subjected to various configurations: number of executors, batch size, etc., in
order to reach the the different ucKPIs defined in Table 11. The experiments will identify settings that
meet the different KPIs. By analyzing the detailed execution data collected by the new trace system,
our early results provide valuable insights and rules of thumb that fulfill the targeted ucKPIs.

For benchmarking Lithops Serve, we used 7 datasets. Each dataset was categorized by size (large,
medium, small) and the number of images it contains (in thousands), e.g., small.0.5k (469 images),
medium.8k (8,476 images), and large.30k (30,068 images).
Objective 2. To assess the performance of the new implementation of the sort stage with serverless
executors + object storage, we used four datasets labeled by their sizes: small (7 GB), medium (21
GB), large (49 GB) and xlarge (250 GB). The benchmarking methodology consists of a comparison
between the old solution with a single AWS EC2 instance vs. the serverless multi-executor solution
with an equivalent amount of aggregated memory between both implementations. At the time of this
writing, our focus is put on two metrics: latency and cost, in order to demonstrate that KPIs ucKPI5
and ucKPI6 are fulfillable.

5.2.6 Objective 1: Early results

0 1000 2000 3000 4000
Latency(s)

0.0

0.2

0.4

0.6

0.8

Pr
ice

($
)

large.60k

large.60k

large.35k

large.35k

large.30k

large.30k

medium.15k

medium.15k

medium.8k

medium.8k

medium.6k
medium.6k

small.1ksmall.1k

ECS
Lithops Serve

Figure 24: Cost-Performance comparison between Lithops Serve and the METASPACE production
solution (ECS).

Experiment 1: Latency-price relation by dataset size. The objective is to compare the perfor-

Page 40 of 77

HORIZON - 101092646 CloudSkin
30/06/2024 RIA

mance of the previous ECS implementation with the new Lithops Serve. To this aim, we used seven
datasets of varying sizes using the default setup. In Lithops Serve, the default batch size was set to
32, with each executor instance (AWS Lambda function) processing one single batch.

Results are shown in Fig. 24 as cost-performance scatter plot. As shown in the figure, Lithops
Serve demonstrates superior processing speeds across all dataset sizes, showcasing high scalability.

Processing speeds up relative to ECS are of the order of 20X to 150X, which fulfills by far ucKPI1.

Also, cost benefits range from being 4X more cost-effective to twice as expensive, depending upon
the dataset size and setup at hand. However,

The cost remains within the budget constraints of ucKPI4.

Experiment 2: Timeline comparison between Lithops Serve functions and ECS containers. The
goal of this experiment is to capture the scalability of Lithops Serve against the pre-project ECS-based
solution. For this test, we use two medium-sized datasets.

0 200 400 600
Time (seconds)

0

20

40

60

80

100

Fu
nc

ti
on

N
um

be
r

Dataset medium.3k

0

1

2

3

4

5

6

7

8

9

N
um

be
r

of
R

un
ni

ng
C

on
ta

in
er

s

1
(a) Long auto-scaling time for ECS. Lithops Serve though
completes the job in a few seconds.

0 100 200 300
Time (seconds)

0

50

100

150

200

250

Fu
nc

ti
on

N
um

be
r

Dataset medium.8k

0

1

2

3

4

5

6

7

8

9

N
um

be
r

of
R

un
ni

ng
C

on
ta

in
er

s

1
(b) Although ECS leverages five pre-warmed containers,
Lithops Serve is significantly faster.

Figure 25: Execution timeline of Lithops Serve Functions (blue) vs. ECS (red).

In Fig. 25, we depict the execution timelines of the Lithops Serve executors on the left side of the
subfigures and the ECS containers on the right side. As seen in the figure, Lithops Serve successfully
starts up all the executors and completes the job before the first ECS container comes up. In the case
of medium.3k (Fig. 25a), a container is consistently active, leading to significant delays in starting
new containers. This delay in container creation results in the new implementation taking 60x times
less time to complete.

Conversely, medium.8k (Fig. 25b) benefits from pre-warmed containers, perhaps because a dataset
was recently under processing. Thanks to the reuse of containers, this larger job terminated before
the previous one. In any case,

The executors in Lithops Serve finished 30x to 60x times earlier, accomplishing ucKPI1.

Experiment 3: Optimal number of functions in terms of throughput and performance/$. Fig. 26
reports the execution of three different datasets, each with a batch size of 32 and a variable number of
executor in cold state. Each bar in the figure represents the throughput (images/s) or performance/$
normalized to the corresponding ECS value. Error bars account for standard deviation across various
repetitions. From careful inspection, it can be easily seen

Lithops Serve achieves throughput (images/s) that is 10 to 150 times higher than ECS, successfully
meeting ucKPI2.

Furthermore, depending on the configuration,

Page 41 of 77

HORIZON - 101092646 CloudSkin
30/06/2024 RIA

Performance per dollar is improved by a factor of 5X to 110X, fulfilling ucKPI3.

Across all datasets, the best performance (images per second) is achieved with ∼ 500 functions.
However, considering cost-efficiency ($), fewer functions are preferable for smaller datasets.

20 50 100 200 300 400 500 600 700 800 900
Functions

x1

x25.0

x50

x75.0

x100

x125.0

x150.0

No
rm

al
ize

d
th

ro
ug

hp
ut

ECS

medium.3k
medium.8k
large.60k

(a) Normalized throughput for an increasing number of
functions.

20 50 100 200 300 400 500 600 700 800 900
Functions

x1

x20.0

x40.0

x60.0

x80.0

x100

x120.0

No
rm

al
ize

d
Pe

rf/
$

ECS

medium.3k
medium.8k
large.60k

(b) Normalized Performance/$ for an increasing num-
ber of functions.

Figure 26: Impact of the number of executors (AWS Lambda functions) on Lithops Serve performance
and cost-efficiency.

Experiment 4: Optimal batch size in terms of throughput and performance/$. Fig. 27 shows
impact of the batch size on Lithops Serve. In this experiment, the number of functions (or executors)
was limited to a maximum of 100.

16 32 64 128 256

Batch Sizes

x1

x10.0

x20.0

x30.0

x40.0

x50

x60.0

N
or

m
al

iz
ed

 T
h
ro

u
gh

p
u
t

ECS

small.0.3k

medium.3k

medium.8k

large.60k

(a) Normalized throughput for different batch sizes.

16 32 64 128 256

Batch Sizes

x1

x10.0

x20.0

x30.0

x40.0

x50

x60.0

N
or

m
a
li
ze

d
 P

er
f/

$

ECS

small.0.3k

medium.3k

medium.8k

large.60k

(b) Normalized Perf./$ for different batch sizes.

Figure 27: Impact of the batch size on Lithops Serve performance and cost-efficiency.

As expected, this figures shows that a smaller batch size is more effective for small datasets. That
is, Lithops Serve performs the best with a batch size of 16 for small.03k. For the medium.3k dataset,
Lithops Serve maximizes performance for a batch size of 32 images. Likewise, larger datasets benefit
from larger batch sizes, with medium.8k achieving peak performance for a batch size of 64 images,
and the largest dataset for 128 images, respectively.

Regarding performance per dollar, batch sizes between 32 and 64 are most effective for small and
medium datasets, while a batch size of 128 is optimal for the largest dataset. In summary,

With the right batch size, Lithops Serve fulfills by far ucKPI2 and ucKPI3.

Page 42 of 77

HORIZON - 101092646 CloudSkin
30/06/2024 RIA

Benchmark 1: Optimal number of executors in terms of latency and cost. Fig. 28 illustrates the
utilization of varying numbers of functions for two datasets of different sizes. In both scenarios, a
common issue arises: the incremental addition of functions does not consistently decrease latency,
but escalates costs. Conversely, provisioning too few functions does not yield cost savings too, but
undoubtedly results in slower processing. Such a situation reflects a diminishing returns curve, thus
emphasizing the importance of identifying the optimal number of executors. For a small dataset of
3, 000 images (Fig. 28a), the best configuration typically ranges between 50 and 100 functions, while
for a large dataset of 60, 000 images (Fig. 28b), it falls within the range of 100-200 executors. To wrap
up,

The key point here is to find the spot where costs begin to rise yet ensuring latency remains low,
i.e., Pareto efficiency, to accomplish ucKPI1 and ucKPI2.

20 30 40 50
Latency (s)

0.1

0.2

0.3

0.4

Pr
ice

 ($
)

102050100
200
300

400
500

600

800
Dataset medium.3k

(a) Medium dataset.

100 200 300 400
Latency (s)

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pr
ice

 ($
)

20
50

100200
300
400500

600

800
Dataset large.60k

(b) Large dataset.

Figure 28: Effect of number of executors on price ($) and latency (s) for a medium and large datasets.
The numbers in the curve refers to the number of executors.

0 6 12 18 24 30 36 42 48 54 60
Execution Time (sec)

02
46
8101214161820222426283032343638404244464850

Fu
nc

ti
on

C
al

l

host submit
function start
function done
status fetched
results fetched

1
(a) Timelines for AWS Lambda executors (cloud).

0 23 46 69 92 115 138 161 184 207
Execution Time (sec)

02
46
8101214161820222426283032343638404244464850

Fu
nc

ti
on

C
al

l

host submit
function start
function done
status fetched
results fetched

1
(b) Timelines for K8s executors (edge).

Figure 29: Timeline comparison of AWS Lambda executors (cloud) and Kubernetes executors (edge)
on the medium.8k dataset.

Page 43 of 77

HORIZON - 101092646 CloudSkin
30/06/2024 RIA

Benchmark 2: Early results of Kubernetes backend with CPUs. Fig. 29 compares timelines for
AWS Lambda executors (cloud) against Kubernetes pods (edge) in cold state. AWS Lambda exhibits
minimal cold start times (difference between host submit and function start times) and a consistent
startup pattern. In contrast, Kubernetes pods display more variability in their startup times.

Kubernetes executors are slow to provision in comparison to AWS Lambda executors. This means
that pre-warming containers may be crucial to achieve low-latency inferences. AI-enabled resource
provisioning will be key here to mitigate cold starts.

Fig. 30 displays the throughput for different configurations across four datasets. Our findings
reveal that increasing the number of pods does not linearly improve performance. Instead, there is an
optimal number of pods for each dataset size beyond which performance degrades. This is likely due
to the overhead associated with managing a larger number of pods. For smaller datasets (small0.3k),
fewer pods (30) are needed to achieve peak performance, while larger datasets (medium.15k) require
a higher number of pods (50) to optimize throughput.

As with AWS Lambda executors, there is an optimal number of containers. To meet ucKPI1 on
end-to-end latency, AI-enabled resource provisioning will be key here to maximize performance,
as well as the split between the cloud and the edge.

10 20 30 40 50 60

Num Pods

0

20

40

60

80

100

Im
a
ge

s
/

se
c

small.0.3k

medium.3k

medium.8k

medium.15k

Figure 30: Lithops Serve on the edge. Throughput as a function of the number of K8s pods on four
datasets.

Benchmark 3: Early results of Kubernetes backend with SCONE. Fig. 31 illustrates the result
of running a 16-image batch on two Kubernetes executors across four different SCONE modes: 1.
Hardware mode with forking enabled (scone dbgfork), 2. Hardware mode without forking (scone
nofork), 3. Simulation (sconesim fork) and 4. native. The results reveal a significant performance
degradation in hardware mode, showing an execution time that is roughly 35x slower compared to
the other modes. This slowdown occurs regardless of whether forking is enabled or not, indicating
that running on the Intel SGX enclave inherently reduces performance. In contrast, the performance
of the code in simulation mode is almost identical to that in native mode.

Further tests were conducted using different numbers of executors and batch sizes in three modes:
SCONE hardware (scone fork), SCONE simulation (sconesim), and native. The results are shown
in Fig. 32. Unfortunately, the available testbed resources do not support more than 4 executors or
batch sizes larger than 16. Even with 4 executors, Out of Memory (OOM) errors were encountered,
particularly in hardware mode, as shown in Fig. 32a. Currently, there is no clear pattern indicating
the optimal batch size.

Confidential execution of K8s executors is possible and close to native execution in simulation
mode, with some important margin of improvement for the second half of the project.

Page 44 of 77

HORIZON - 101092646 CloudSkin
30/06/2024 RIA

scone-nofork scone-dbgfork sconesim-fork
x0

x5

x10

x15

x20

x25

x30

x35

N
or

m
al

iz
ed

 L
at

en
cy

native

Figure 31: Early test running a batch on 2 executors in different SCONE modes

scone-fork scone-sim native

Mode

0

200

400

600

800

1000

L
at

en
cy

 (
se

co
n
d
s)

Batch size

8

16

(a) Timelines for AWS Lambda executors (cloud).

scone-fork scone-sim native

Mode

0

200

400

600

800

1000

1200

1400

L
at

en
cy

 (
se

co
n
d
s)

X
OOM error

Number of executors

1

2

4

(b) Timelines for K8s executors (edge).

Figure 32: Early test running on different number of executors and batch sizes.

5.2.7 Objective 2: Early results

Benchmark 4: Throughput and bandwidth capabilities of AWS S3. Sorting at scale is a IO-bound
operation that involves a squared number of data partitions to be exchanged between executors. If
intermediate storage is the means to facilitate this all-to-all exchange, good performance can only be
achieved with high throughput (operations/s) and IO bandwidth (MB/s). To ensure that AWS S3
may be a convenient option to act as ephemeral storage substrate, we first measured its throughput
and bandwidth capacities for an increasing number of reader and writer serverless executors.

Fig. 33 reports that throughput scales linearly with the number of executors, both for read and
write operations, up to 1, 000 serverless functions (the default maximum number of concurrent AWS
Lambda instances). Per-client bandwidth increases to around 90MB/s for reads and 85MB/s for
writes at 100 concurrent serverless executors. With further concurrency levels, the IO bandwidth per
executor remains constant (Table 12).

The lack of bandwidth degradation at higher concurrency levels, along with throughput linearity,
makes AWS S3 a promising technology for intensive data exchanges. We can therefore expect AWS
S3 to support the levels of parallelism required to sort hundred-GB datasets.

Throughput and bandwidth of AWS S3 shows scalability on parallel exchange operations, with
up to 1, 000 concurrent serverless executors, decreasing the odds to become a bottleneck.

Page 45 of 77

HORIZON - 101092646 CloudSkin
30/06/2024 RIA

(a) (b)

Figure 33: S3 read (a) and write (b) throughput on an increasing number of concurrent clients.

Table 12: Measured per-worker maximum IO bandwidth (in MB/s) for increasing file sizes, in IBM
Cloud and AWS S3.

Read (MB/s) Write (MB/s)

File size (MB) COS S3 COS S3

1 35.72 21.80 15.17 7.54

10 62.42 81.89 44.42 42.71

100 62.30 89.72 53.85 86.96

Table 13: Sort configurations, using a VM and serverless functions, for each input.

FaaS

Input EC2 Instance Mappers Reducers

small m4.2xlarge 30 30

medium m4.4xlarge 90 90

large m4.10xlarge 210 210

Experiment 5: Early sort latency comparison between a VM and serverless functions. In this
test, we compared the latency of an in-place sort against a distributed, serverless sort. Table 13 lists
the EC2 instance used in each case, which we precisely chose based on the minimal resources needed
to process the dataset. We also list the number of parallel serverless functions used in the distributed
sort, for which we allocated 1, 769MB of memory per function. Sorting is executed over a imzml
dataset of the sizes described in section 5.2.5, previously converted to bidimensional numpy arrays
(including pixel id, m/z value and intensity).

Page 46 of 77

HORIZON - 101092646 CloudSkin
30/06/2024 RIA

Fig. 34 represents end-to-end sort execution times on each configuration. Latency measurements
do not include EC2 startup times. We only measured data ingestion, processing and write time for the
VM-based sort. Serverless sort results also include the provisioning time. As shown, the distributed
sort is a faster option for the three studied inputs. We reach a speedup of 1.76 at small, 2.06 at medium
and 2.12 big, reaching the goals described in ucKPI5.

Our early prototype is already delivering better latency results than the VM-based solution, thus
meeting ucKPI5. These results should be accompanied by a Learning Plane that chooses the right
number of functions with the best cost-performance ratio.

1.76x
2.06x

2.12x

small medium large xlarge
0

100

200

300

400

500

600

700

E
xe
cu
tio
n	
tim
e	
(s
)

VM FaaS

Figure 34: Execution times of a sort operation on different inputs, using a VM vs serverless functions
(FaaS). Labels over FaaS bars represent their speedup against their VM counterpart.

401.82%

500.00%

453.58%

small medium large xlarge
0

1

2

3

4

5

6

C
os
t	(
$)

VM FaaS

Figure 35: Cost of a sort operation on different inputs, using a VM vs serverless functions (FaaS).
Labels over FaaS bars represent their cost increase compared to their VM counterpart.

Experiment 6: Early sort cost comparison between a VM and serverless functions. To evaluate
the cost of the executions in Experiment 1, we aggregated the AWS S3 requests and the execution
time-related costs of each configuration. The early version of the distributed sort does not meet
with the requirements of ucKPI6, as depicted in Fig. 35. However, this goal will come through a
refined implementation and the addition of an intelligence layer that calculates the cost-minimal
configuration under the ucKPI5 and ucKPI6 constraints.

Page 47 of 77

HORIZON - 101092646 CloudSkin
30/06/2024 RIA

Enhancing our serverless sort with AI will be key to achieve ucKPI6.

Benchmark 5: Early sort performance results of serverless functions on a scaled up dataset. Fi-
nally, we demonstrated that our serverless sort supports currently unfeasible dataset sizes. We sorted
a 250GB dataset in 398.40 seconds, including data ingestion and writing back the results to AWS S3.
The execution time remains coherent with the magnitudes of the smaller datasets, scaling sublin-
early with the input size. We used 2, 000 serverless executors (1, 000 mappers and 1, 000 reducers)
with 1, 769MB memory each.

ucKPI7 has not been fully satisfied with our early prototype, but we will evaluate sorting a 500GB
dataset in further development stages. The production-level METASPACE annotation pipeline
could eventually incorporate a serverless sort to handle large datasets.

Page 48 of 77

HORIZON - 101092646 CloudSkin
30/06/2024 RIA

5.3 Use Case: Computer-Assisted Surgery (CAS)

5.3.1 Overview

Computer-assisted surgery (CAS) is a rapidly advancing field that leverages technology to enhance
the precision, efficiency, and outcomes of surgical procedures. For this, CAS involves integrating
various technologies, such as AI, real-time data processing, and advanced imaging, to assist surgeons
during operations. By utilizing these technologies, surgeons can gain a deeper understanding of the
surgical environment, leading to improved decision-making and reduced risks of complications.

In the context of the CloudSkin, the CAS use case of NCT is designed to support surgeons by
providing real-time video analytics, predictive insights, and robust data management systems in the
cloud-edge continuum by utilizing the developed frameworks within this project. The primary goal
is to create a seamless and efficient surgical process where CloudSkin’s advanced technologies aid in
various steps of a surgery, from intra-operative guidance to postoperative analysis.

5.3.2 Status of the use case at M18

By month 18, the CAS use case under the CloudSkin project has made significant strides. The efforts
have focused on familiarizing with essential technologies, setting up a cluster for the PoC, developing
crucial application components, and enhancing the security and portability of these components. .

Achievements. The main achievements up to M18 are the following ones:

• Familiarization with Pravega and GStreamer:

– NCT tech training: The team has become well-acquainted with Pravega and GStreamer,
key technologies for handling real-time video streams and analytics.

• Video streaming infrastructure for AI inference:

– Setup of CAS PoC cluster: Pravega and GStreamer have been successfully set up on a
cluster for the PoC provided by DELL. This setup is key for running the CAS application
and conducting experiments. Besides, DELL has provided the base container image that
allows NCT data scientists to integrate AI inference models and running them in a cluster
while doing IO via Pravega.

– Pravega + GEDS: Integration of Pravega with IBM GEDS for increasing the tolerance of
the streaming surgery infrastructure to unavailability of long-term storage (LTS) while
performing stream data tiering. This allows Pravega to keep ingesting data during real-
time AI inference in surgeries, even under network disconnections from LTS.

– Predictive auto-scaling of Pravega instances: Adapting to fluctuating workloads requires
changing the number of Pravega instances, but adding/removing a Pravega instance may
induce a latency spike for a video writer/reader (e.g., disconnection). This may impact
the experience of surgeons while doing AI inference on video streams. We propose a
predictive auto-scaling model (LSTM-based) for Pravega that minimizes the number of
instance auto-scaling events, therefore reducing tail latency in real-time AI inference. This
approach paves the way for integrating Pravega with the CloudSkin Learning Plane.

• Development of AI inference models for CAS tasks:

– Liver Segmentation: A Python plugin has been developed to assist in segmenting the
liver during surgeries.

– Surgical Tool Detection: Another Python plugin has been created to detect surgical tools
in real-time.

– Surgical Phase Detection for Cholecystectomy: A plugin for detecting different phases of
a cholecystectomy procedure has been developed, aiding in the procedural analysis and
guidance.

Page 49 of 77

HORIZON - 101092646 CloudSkin
30/06/2024 RIA

• Containerization of the AI models:

– The entire approach, including the plugins for liver segmentation, surgical tool detection,
and surgical phase detection, has been containerized using Docker. This enhances the
portability and ease of deployment across different environments.

• Confidential computing framework:

– In collaboration with TUD, the Dockerized liver segmentation process has been adapted
for secure execution using a confidential computing framework. This adaptation aims to
ensure the confidentiality and integrity of the computational processes, although it still
needs to be evaluated.

Next Steps. The next phase will focus on integrating these plugins and Dockerized components into
the broader CloudSkin framework, enhancing real-time video analytics, and leveraging predictive
insights for dynamic application migration. Additionally, expanding data sources to include metrics
such as energy consumption will be a priority, further optimizing intelligent workload placement
and resource provisioning. The evaluation of the confidential computing framework will also be a
critical step to ensure secure execution.

By building on these advancements, the CAS use case is poised to leverage the continuum’s full
potential, significantly improving the precision and efficiency of computer-assisted surgeries.

5.3.3 Why this use case needs the compute continuum?

One of the key challenges for the computer-assisted surgery use case of NCT is the ability to execute
AI inference on surgery video streams both in real-time and in batch [17]. In terms of infrastructure,
these are two completely different data processing approaches with disparate requirements. On the
one hand, executing streaming video inference requires low latency. To wit, the system is required
to minimize the time for a video frame being produced by a camera to serving that frame to an AI
inference job, while storing it for durability reasons. The main reason is that NCT is exploiting real-
time video inference during surgeries to assist surgeons during the procedure. This is a use case with
stringent latency requirements, in which long delays between capturing video and displaying the
AI inference output back to the surgeons cannot be tolerated. Therefore, real-time AI inference for
computer assisted surgery may be ideally executed at the edge (e.g., servers close to surgery rooms),
specially to minimize latency. On the other hand, data scientists at NCT need to perform batch
analytics on historical video data from surgeries. In this case, batch jobs like AI model training require
high throughput for bulk loading historical video data and process it in parallel. This type of activity
is more resource intensive and may be better to execute on a larger infrastructure, like a private cloud
or large IT infrastructure within NCT’s campus. Therefore, we realize that the optimal execution of
NCT workloads and tasks encompasses heterogeneous infrastructures, from edge servers close to
surgery rooms to larger IT infrastructures for running batch analytics.

In our PoC, containerizing AI inference in NCT brings several advantages. One of them is that
now AI inference workloads can be executed on health data across the whole cloud-edge continuum,
based on the available resources. However, in this setting, one needs to ensure the confidentiality of
both the data and the workload analytics. Trusted Execution Environment (TEE) such as Intel SGX is
able to facilitate both challenges. SCONE [4] can lift-and-shift existing applications in a Docker Image
effortlessly to be Intel SGX-compatible. The advantage is two-fold: adaptive deployment regardless
of the hardware availability and confidential execution is guaranteed by Intel SGX enclave without
changing the existing analytical workload.

5.3.4 Where AI helps in this use case?

A core goal for NCT is to exploit multimedia (e.g., video, pictures, audio) generated during surgeries
in order to apply AI models. Thanks to the different AI models being developed by NCT, surgeons
will have a deeper knowledge of the surgery to be performed, both before and while it is taking place.
This is expected to dramatically reduce mistakes and complications during surgeries, which is one

Page 50 of 77

HORIZON - 101092646 CloudSkin
30/06/2024 RIA

of the main reasons for postoperative patient death. To help NCT in this task, CloudSkin proposes
a containerized approach for developing and running AI inference models and the exploitation of
a streaming storage service for managing surgery data [23]. Before CloudSkin, the daily work of
NCT’s data scientists involved the execution of AI models via scripts and the manual management
of surgery data that is error-prone, time-consuming, and hard to scale. We believe that CloudSkin’s
infrastructure will improve productivity and help NCT data scientists to be more focused on the AI
models they research by simplifying the deployment and data management of video analytics.

Furthermore, AI has other applications in the NCT use case when it comes to the infrastructure.
More specifically, we have detected that NCT surgery rooms present strong daily and weekly usage
patterns. If we consider that surgery rooms are expected to generate video streams and perform AI
inference in real time, this translates into fluctuating workloads with stringent latency requirements.
In CloudSkin, we focus on learning and anticipating such workload patterns for proactively adapting
the streaming infrastructure via AI/ML techniques [20]. The final outcome will be to integrate such
workload prediction techniques for the streaming infrastructure in the CloudSkin Learning Plane.

5.3.5 Experiments, KPIs, and benchmarks

In addition to the general KPIs of the project, in the use case of NCT we target the following specific
use case KPIs (ucKPI):

Table 14: Summary of use case-specific KPIs for CAS.

ucKPI Description
ucKPI1:Productivity The streaming infrastructure should provide means for easily containerizing

AI inference models and managing data automatically.
ucKPI2:Latency To guarantee safety, surgeons should act on up-to-date information, requiring

low latency preferably < 10ms (p95) on HD video streams (25-30 fps).
ucKPI3:Reliability The real-time AI inference and data ingestion should tolerate network failures

with the rest of the NCT campus infrastructure (e.g., minutes).
ucKPI4:Scalability As the requirements in the operation room changes, e.g. unexpectedly due to

a sudden increase of complexity of the surgery or expectantly due to new
surgery suites, the algorithm performance should not decrease.

ucKPI5:Confidentiality When computation is moved to the cloud, patient-specific information should
not be accessible.

To validate our contributions on top of the NCT use case, we propose the following experiments
and benchmarks:

• Experiment 1: Deployment of containerized AI models and data management (ucKPI1): A first goal of
our evaluation is to demonstrate that our streaming infrastructure PoC can serve video streams
to containerized AI inference models of NCT. Moreover, we want to assess that video streams
are automatically being moved to long-term storage, thus abstracting data management tasks
from NCT data scientists.

• Benchmark 1: End-to-end video frame latency measurement via GStreamer (ucKPI2, KPI3): In the NCT
use case, we want to demonstrate that the CloudSkin streaming infrastructure meets the basic
performance requirements for real-time AI video inference. To this end, we plan to execute
benchmarks with video streams and Pravega [17], the core streaming storage engine of Cloud-
Skin. First, such benchmarks will describe the IO performance of Pravega for synthetic video
streams (e.g., write latency, end-to-end latency) for different parameters (e.g., FPS, resolution).
Moreover, we will compare the performance of an NCT AI model performing inference on top
of a real surgery video stream with the IO performance of Pravega. This would give us a strong
evidence of whether our infrastructure for video analytics meets NCT’s latency requirements.

• Benchmark 2: Induce unavailability of long-term storage while ingesting video data (ucKPI3, KPI8):

Page 51 of 77

HORIZON - 101092646 CloudSkin
30/06/2024 RIA

While Pravega may be a suitable streaming substrate for video analytics, it was originally de-
signed for cluster environments. This is specially important when we consider the automatic
streaming data tiering implemented in Pravega. In a nutshell, Pravega assumes that the long-
term storage service to offload stream data will be mostly available. However, in a cloud-edge
scenario like NCT, stream data may need to be offloaded from an edge server close to a surgery
room to a storage system on another part of a campus (or at another NCT campus). This means
that the network connection from the surgery room to the long-term storage service could be
unreliable, which would eventually prevent Pravega to continue ingesting data. To overcome
this problem, we will experiment integrating an smart ephemeral storage service (IBM GEDS)
in Pravega. Concretely, we plan induce outages in the long-term storage system that stores
stream data for Pravega and evaluate the improvement in buffering (time, data size) capabili-
ties of Pravega with the integration of GEDS.

• Benchmark 3: Generate fluctuating video streaming workloads and evaluate auto-scaling (ucKPI4,
KPI7): As we mentioned, we have detected strong daily and weekly patterns in the surgery
room utilization at NCT. First, we plan to evaluate whether the streaming infrastructure in
CloudSkin (Pravega) can be adapted and auto-scale to accommodate fluctuating workloads [20].
To this end, we will perform a real deployment and induce a trace-based workload based on
NCT traces. We will capture metrics like latency after and before the streaming infrastruc-
ture auto-scaling events, as well as the latency impact that changing the number of Pravega
instances may have on video streams. Moreover, we will evaluate predictive approaches to
auto-scaling the streaming infrastructure, measuring aspects like the number of auto-scaling
events, the latency distribution of video frames, or the instance time execution, among others.
These experiments will elucidate whether Pravega can be an elastic and adaptive streaming
substrate for NCT.

• Experiment 2: Confidential execution of NCT AI models (ucKPI5, KPI6): Developing a machine
learning model is a huge amount of task and integral to the project. One of our goals is to
enable the confidential execution of such an AI model effortlessly. We will prepare a Docker
image of which is compatible with Intel SGX. Moreover, we plan to integrate such images with
the SCONE’s framework, offering additional features such as network shield and secret prop-
agations, to name some. Afterwards, we are going to run such model in a trusted execution
environment and measure its performance compared to the native one.

5.3.6 Early results

Experiment 1: Deployment of containerized AI models and data management. The first aspect
to address for the NCT use case is the ability to executing containerized AI inference on top of a
streaming infrastructure (Pravega) that automatically performs storage tiering of video streams. To
this end, we have provided a container base image to NCT that contains the Pravega GStreamer
dependencies to connect AI inference jobs. As described in Section 5.3.2, we deployed the "liver
segmentation", "instrument detection", and "surgery phase detection" AI jobs as containers. With
our PoC in place (see Section 4.2.3), we have been able to ingest video data, read it back via the
Docker container, and execute the inference model in a Kubernetes environment. An example of that
is Fig. 36 (upper figure), in which we can visualize via the Pravega Video Server the original video
stream and a new video stream generated from the output of the liver segmentation AI inference.

Apart from executing containerized AI inference, our PoC also takes care of video data manage-
ment. To wit, video streams ingested in Pravega are written with low latency to the write-ahead log.
Then, Pravega coalesces stream data into chunks and moves them to long-term storage. For NCT,
this has two main advantages. First, data scientists do not have to worry about moving video data
manually from surgery rooms to an external storage facility, as Pravega does it automatically. Second,
Pravega may exploit high throughput in external storage systems, like NFS or object storage, to serve
batch analytics jobs (e.g., AI training). As an early result, Fig. 36 (lower figure) shows an experiment

Page 52 of 77

HORIZON - 101092646 CloudSkin
30/06/2024 RIA

Figure 36: Early results running containerized AI inference jobs (upper figure) and executing a batch
reader on a video stream (lower figure).

in which Pravega is ingesting a video stream for 25 minutes. Then, we release a video reader that
starts reading the video stream from the beginning. As can be seen, the video reader catches up with
the video writer in a couple of seconds, exhibiting a read throughput of 95MBps. This experiment
gives a sense that the streaming infrastructure built for NCT can also serve batch analytics jobs.

ucKPI1: We have tested the execution of containerized AI inference models in our streaming PoC
for video analytics. We have also shown how Pravega performs automatic tiering of stream video
data, which allows serving batch AI jobs. Overall, our PoC provides a more productive, Cloud-
Edge friendly infrastructure for computer-assisted surgery use cases like NCT.

Benchmark 1: End-to-end video frame latency measurement via GStreamer. The goal of this first
experiment is to understand the relative impact of Pravega IO latency on a video inference pipeline.
Our main focus in this set of experiments are latency metrics: i) end-to-end latency, which is the time
it takes for a video frame to be durably written to Pravega and read back immediately after, and
ii) inference latency, which is the time it takes for an AI inference model to process a single video
frame. In Fig. 37, we show one of the NCT AI inference jobs used to evaluate the inference latency
compared to the IO end-to-end latency. Concretely, we use two inference jobs in this experiment: i) a
liver segmentation job, and ii) and surgery instrument identification job. The video inference jobs are
deployed on a separate Kubernetes node with access to a GPU. In Fig. 37, we can compare the latency
values related to IO and video inference. Visibly, while the distribution of inference latency is not
heavy tailed (i.e., GPU has a more stable behavior than network/drive), most video inference latency
values are significantly higher than IO latency. For instance, at p90, inference latency is around 2x
higher than IO end-to-end latency for local drives (AWS EKS, on-premises cluster). This means that
ingesting video data via Pravega is affordable, given all the data durability and management benefits
it provides. Interestingly, we observe that running a video inference job without a GPU is virtually

Page 53 of 77

HORIZON - 101092646 CloudSkin
30/06/2024 RIA

Figure 37: Latency comparison of video frame IO vs. inference latency.

impractical, due to the high latency that may result from running inference on a regular vCPU. This
is an interesting hardware aspect to be considered when deploying Pravega at the edge, if a customer
needs multiple video inference jobs to be running in parallel.

ucKPI2, KPI3: With a proper storage layout, the video frame end-to-end latency represents only a
fraction of than the actual inference latency in the NCT models tested (e.g., end-to-end latency is
45% lower than inference latency at p95). Therefore, our PoC is achieves good enough performance
for real-time AI inference, while providing other key guarantees (e.g., durability, consistency).

Benchmark 2: Induce unavailability of long-term storage while ingesting video data. The infras-
tructure serving the NCT use case may be encompass edge and cloud resources; i.e., the edge may
host Pravega instances ingesting video streams with low latency along with AI inference models,
whereas data may be stored in the long term on an external storage service for future batch pro-
cessing. This yields that the network connection between the edge infrastructure and the long-term
storage for video streams may be unreliable. This can be problematic for a tiered storage system
for data streams like Pravega, as it was initially designed for a data center environment where a
long-term storage service is expected to be (almost) always available. Without getting into too much
detail, upon an event write, Pravega temporarily stores that event in the in-memory cache after get-
ting the acknowledgement from the write-ahead log. The data will be sitting in the cache and tagged
as “unevictable” until the subsystem that performs data tiering marks the event as safely stored in
long-term storage. But, in the case that long-term storage is unavailable, Pravega may only continue
ingesting data as long as there is space in the in-memory cache. Beyond that point, Pravega will
throttle writers and stop ingesting data. In the case of NCT, this may lead to stop video ingestion and
AI inference during a surgery, which is undesirable.

As we describe in deliverable D3.3, for alleviating the impact of long-term storage unavailability
in Pravega we have integrated Pravega with IBM GEDS. With this integration, Pravega believes to
be storing data on an external storage service, but it is GEDS the one taking care of data tiering
on its behalf. By doing this, GEDS can exploit local storage and apply smart tiering algorithm that
Pravega does not implement as of today. Fig. 38 shows an experiment that compares the ingestion
buffering capacity of Pravega with and without GEDS. In this experiment, Pravega is configured
with an in-memory cache size of 1.5GB, whereas the local storage configured in GEDS is 5GB. The
ingestion throughput is generated via GStreamer video writers which write at ≈ 15MBps. During the
experiment we disconnect the long-term storage service storing stream data (MinIO) to measure the
ingestion buffering capacity of the system with no long-term storage available. Visibly, Pravega along
can handle workload ingestion for 77 seconds, whereas Pravega with GEDS can last 292 seconds.
This represents an improvement of 3.8x in terms of ingestion buffering in front of long-term storage
outages. Note that this experiment uses a small GEDS volume; we could consider much larger GEDS

Page 54 of 77

HORIZON - 101092646 CloudSkin
30/06/2024 RIA

Figure 38: Improvement of Pravega ingestion buffering capabilities when integrated with GEDS.

Figure 39: Predictive, trace-based auto-scaling of Pravega instances based on NCT traces.

volumes, as local storage may be a more abundant edge resource compared to memory.

ucKPI3, KPI8: The Pravega + GEDS integration can improve the tolerance to long-term storage
outages in orders of magnitude (e.g., 3.8x in Fig. 38) by exploiting local storage and smart tiering
of stream data. This is key for reliably serving NCT video analytics in the Cloud-Edge Continuum.

Benchmark 3: Generate fluctuating video streaming workloads and evaluate auto-scaling. In this
set of experiments, we focus on the ability of Pravega to auto-scaling for handling fluctuating work-
loads. This is vital given the strong usage patterns observed in NCT surgery room occupancy traces.
In particular, we focus on the ability of the system to effectively to increase and decrease the number
of instances via an external component that may orchestrate Pravega based on some AI/ML tech-
niques. Note that we have explored some predictive AI/ML technique to auto-scaling Pravega, and
we report the results in deliverable D5.1.

Fig. 39 shows a trace-based experiment on AWS EKS. We developed a trace-based orchestrator
that can instantiate video writer/reader pairs of pods in a Kubernetes cluster based on an input trace
from NCT. Similarly, such orchestrator can also change the number of Pravega instances according
to an input trace. In this experiment, we executed a 1-day workload trace from NCT (at 20X speed)
in which we assumed that every surgery room has a single video writer/reader pair. Moreover, with
our predictive auto-scaling algorithm presented in deliverable D5.2, we generated a trace that dic-
tates the number Pravega instances to run. As visible in Fig. 39, the ingestion workload in Pravega

Page 55 of 77

HORIZON - 101092646 CloudSkin
30/06/2024 RIA

follows a daily pattern in which the central hours of the day exhibit a much higher workload than
the nights. In this sense, we can also observe in Fig. 39 that the predictive auto-scaling algorithm
triggers the auto-scaling of a new Pravega Segment Store instance before the workload reaches its
peak. This demonstrates the ability to auto-scale the Pravega streaming infrastructure to accommo-
date workload changes. Moreover, in this deployment, we can also observe that the Pravega write
latency at p99 obtained from the system metrics falls under 20ms most of the time, which is a great
value considering video streams of 30 fps (p90 write latency is ≈ 4ms).

ucKPI4, KPI7: A streaming storage infrastructure based on Pravega does not only achieve good
write latency, but it can also accommodate fluctuating workloads. This is an important advantage
for NCT and an interesting substrate for designing auto-scaling policies in the Learning Plane.

Experiment 2: Confidential execution of NCT AI models (ucKPI5, KPI6). In this experiment, we
automate a legacy application translation into a confidential TEE-enabled application. TUD and NCT
are working together to create an image where the liver segmentation processing could be done in
a confidential way. At the time of this writing, we have successfully translated the native image
to an Intel SGX-compatible image with zero development cost, requiring only changes to the base
Dockerfile. As for other components such as ROS core, ROS replaying program, and ROS image
viewer, are not part of this effort.

In Fig. 40, we show “liver segmentation” with confidential execution guarantees (bottom-right).
Other parts of the figure shows other components such as ROS core (top-right), image viewer (top-
left), and message measurement (bottom-left). At the moment, those components are not protected
by Intel SGX. Very succinctly, we have run a preliminary experiment to compare native execution
with SCONE hardware mode (executed inside an Intel SGX enclave) and SCONE simulation mode
(executed only in SCONE that simulates Enclave behaviour). Our preliminary results show that the
hardware and simulation mode introduce overhead as much as 21.6× and 3.6× compared to native
execution. We suspect this is caused by the large memory usage that cannot be handled by Intel SGX.
Improving the performance is already a work in progress.

Figure 40: Showcase of running a liver segmentation model inside an Intel SGX enclave.

Page 56 of 77

HORIZON - 101092646 CloudSkin
30/06/2024 RIA

ucKPI5, KPI6: A zero development effort approach for translating existing container image to
TEE-compatible image has been done. This method could be applied to another use case within
CloudSkin project. Current performance overhead has been observed and will be addressed as soon
as possible. Using Intel SGX enclave should protect both the computation as well as patient data
as mentioned in the KPI.

Page 57 of 77

HORIZON - 101092646 CloudSkin
30/06/2024 RIA

5.4 Use Case: Agriculture

5.4.1 Overview

This use case addresses the problem of sharing agricultural data. Most sensor management solutions
are closed platforms from manufacturers or sensor installation and analysis solution providers, and
data is centralized on private servers. Furthermore, there is great reluctance to transfer data due to
loss of control over its use and fear that the data will be used by competitors.

This represents a barrier to the creation of an ecosystem of companies, applications, and services
that can exploit agricultural information by making data available to different interested agents, not
only governments and environmental inspection agencies, but also intermediaries and providers of
other information services.

The provision of an environment that facilitates the exchange of information allows farmers and
society in general to benefit from greater productivity and the emergence of new related business
services, supported by the application of information technologies.

The agricultural use case proposes to fulfill the above needs through two main experiments:

• Experiment 1: Agricultural Dataspace

There are several actors interested in the use and exploitation of agricultural data, although
their interests are very different. While farmers want to monitor their land and optimize their
production, the government wants to be able to inspect their environmental impact. Moreover,
data brokers want to sell data to potential customers, and other companies and entities may
seek to create solutions or analytical studies, for scientific or technological purposes.

Figure 41: Agricultural Dataspace main menu.

To unite the different interests of data access, the developed functional PoC of a dataspace (see
Fig. 41) establishes a system of contracts, which allows compliance with the legal restrictions
and interests of data providers and consumers, and at the same time allows them to monetize
their information, thus encouraging their updating of agricultural data sources.

It is not enough for the information to be accessible, but for being useful its meaning, it must
be understood. To solve the problem of different types of measurement units and meaning of
data, the Dataspace establishes a common data dictionary (see Fig. 42), which gives meaning
to the shared information. The information is accessible through a data source search engine,
which allows you to subscribe or acquire the information (see Fig. 44).

Of course, we do not leave aside the main objective of the Dataspace, which is to share data. To
do this, the Dataspace implements a data upload system and generates a link to share it with

Page 58 of 77

HORIZON - 101092646 CloudSkin
30/06/2024 RIA

interested users, proposing a mechanism to standardize data communication between different
platforms, regardless of the origin of the data or the sensor manufacturer.

Figure 42: Data dictionary.

Figure 43: Dataset creation.

Page 59 of 77

HORIZON - 101092646 CloudSkin
30/06/2024 RIA

Figure 44: Public search of datasources.

Additionally, and taking advantage of the experience of similar projects related to dataspaces,
such as the METASPACE2020.eu in the project, the planned functionality has been expanded with
the inclusion of the “Data Project” concept. This concept provides an added value by making
projects that consume data visible, allowing them within the project to not only to obtain the
information, but also to process it and automatically update or insert a new data source related
to the project. This functionality lays the basis for the construction of information processing
layers, while promoting the expansion of the agricultural Dataspace for both scientific and
commercial uses and of interest to society.

Main components. Here we provide a brief summary of the main components of the Datas-
pace:

Datasets. Datasets form the core of the application and store detailed information about the
data sets available in the system. Each record in this table contains key attributes such as dataset
owner, origin, price, access type (sale, rental, free), and additional metadata such as description,
category, and creation date.

Fig. 43 to Fig. 47 shows how a user can create a dataset. This includes basic metadata such as
the dataset name, the dataset owner, its origin, etc. It is also possible to define the way in which
the data will be shared, whether “rent”, “sale” or “free” (see Fig. 45). A dataset owner can also
indicate the exact area in which the data has been taken, which can include the latitude and
longitude of the area. Later, a pin will be displayed on a map, showing the area where the data
was collected.

Figure 45: Dataset creation form 1/3.

The reason for creating the dataset is the availability of the data within this dataset. In order to
upload the information we will have a section in the form: “Format of generated data”, where
the structure of the data can be defined. Static data will be loaded, it is essential to keep in

Page 60 of 77

HORIZON - 101092646 CloudSkin
30/06/2024 RIA

Figure 46: Dataset creation form 2/3.

mind that the names of the fields must be defined in the same way and order in the loading
Excel (XLSX and XLS supported formats) and in this case you must choose in the “DataType
Upload” the “Static Data” option. The reason for creating the dataset is the availability of the
data within this dataset. In order to upload the information we will have a section in the form:
“Format of generated data”, where the structure of the data can be defined.

Figure 47: Dataset creation form 3/3.

Once imported, the data is stored in the DB “datareads” (see Fig. 48). Additionally, the data is
visible within the platform (see Fig. 49):

• Engines

The engines play a fundamental role, since they contain the basic information that will contain
the data that will be imported into the datasets. As we mentioned in the previous point, this
structure is defined as “Format of generated data” (see Fig. 50).

• Datareads

Datareads are records that contain a set of structured data, given by the engine, with valuable
information for the dataset. We can loop up these datareads within the dataset, in the “Last 5
records” section (see Fig. 51):

Figure 48: DB Datareads.

Page 61 of 77

HORIZON - 101092646 CloudSkin
30/06/2024 RIA

Figure 49: Available dataset information.

Figure 50: Data format definition.

Figure 51: Last 5 records screenshot.

Page 62 of 77

HORIZON - 101092646 CloudSkin
30/06/2024 RIA

Figure 52: Data dictionary.

Figure 53: Project form.

• Dictionary

The dictionary entity stores basic information related to the data used to describe data types,
default units, and description of the data that we are going to import into the datasets. This
component facilitates the definition and structure of the data that the dataset datareads will
contain. To create a new one, you will need to be a system administrator.

The data shown in Fig. 52 will be the data types within the dataset engines that we create, which
we will have available, making it possible for the administrator to create new data types.

• Projects

The projects are associated with the use of a set of datasets, which make up a logical data entity.
In order to create a “Project” it will be necessary to have previously created datasets. The
information that the “Project” will contain will be composed of basic data such as the name,
owner (Entity), the type of access to the data, and of course, the datasets that will be part of it
(see Fig. 53).

• Purchases and sales

Purchases contain information about the acquisition of datasets by users. In order to acquire a
Dataset, it will be accessed from the “Available Datasets” (see Fig. 54).

Once the purchase is requested, the owner of the data set may accept or deny the acquisition
within the conditions of use determined by the data provider. The owner will be able to view
all the transactions pending management from the Sales menu.

If the owner finally accepts the purchase, the Purchases form will display the acquired datasets.

User management

User, role, and permission tables are essential for user authentication and authorization within
the Dataspace. Roles and permissions control access and operations allowed in the system,
ensuring data security and integrity.

Page 63 of 77

HORIZON - 101092646 CloudSkin
30/06/2024 RIA

Figure 54: Dataspace purchase.

Figure 55: Database diagram.

Relationship table

The project_dataset, model_has_permissions, role_has_permissions, model_has_roles, and other
relationship tables establish links between projects, data sets, and transactions performed by
users. These relationships allow you to associate datasets with specific projects and manage
acquisitions made in the Dataspace (see the database diagram in Fig. 55).

• Experiment 2: Vegetation Index Calculation from geospatial images

In this second use case experiment we are using C-Cells to calculate vegetation indexes from
geospatial imaging data. Given the scale and resolution of geospatial images, this problem
benefits from being addressed using scale-out technologies such as MPI, making it a natural fit
for C-Cells and C-Cell migration.

In particular, we use the GRASS11 geospatial imaging software and their vegetation index add-
on written using C and MPI to calculate these indexes on a batch of images. The main benefit
of using C-Cells to run this application instead of regular MPI processes is that, at no extra
development cost (only re-compilation to WebAssembly), the application can benefit from live
migration across the cloud-edge continuum. This means that the calculation may begin in a set
of processes running at the edge, but then be live migrated to cloud-grade servers when the

11https://grass.osgeo.org/

Page 64 of 77

https://grass.osgeo.org/

HORIZON - 101092646 CloudSkin
30/06/2024 RIA

Edge Worker

C-Cell C-Cell

Edge Worker

C-Cell C-Cell

Cloud Worker

C-Cell C-Cell

C-CellC-Cell

Cross-Compile

Edge Execution

(4 C-Cells)
Offload to Cloud

(w/ Live Migration)

Figure 56: Vegetation Index Calculation from Geo-Spatial Images with C-Cells.

size of the batch of images increases.

Fig. 56 illustrates this process. First, C/C++ code written using the GRASS and OpenMPI API is
cross-compiled to WebAssembly. As a result of this cross-compilation, and as described in D4.1,
some symbols are left un-resolved like, for example, the OpenMPI API. Their definition will be
provided by Granny at runtime, in orther to implement transparent live-migration. Some other
symbbols, like those corresponding to the GRASS API, are resolved at compilation time because
all transitive dependencies of GRASS are also cross-compiled to WebAssembly and statically
linked. The WASM code is then uploaded to the CloudSkin platform, and, when geo-spatial
images arrive, will start processing them. At the beginning, to minimize data movement, this
processing may be happen in lower-powered edge nodes, geographically distant from each
other. After a while, when computational demands increase, the C-Cells executing the code
can be live migrated to a powerful cloud server to improve locality of execution and reduce
execution time. In D4.2 we include experiments that quantify the improvements in execution
time.

5.4.2 Status of the use case at M18

On the one hand, we have developed a dataspace, which allows the management and exploitation
of data sources by the different interested roles.

Agricultural management is complex to analyze due to the extreme diversity, derived from the
biological and environmental variety, given the diversity of tasks and challenges in agriculture.

At M18, a first version, very close to a market product, of an agricultural Dataspace has been
deployed. This platform contemplates the key aspects to consider for its management, including the
semantics of the data through the use of a data dictionary, and the contractual complexity derived
from information management needs.

Actually, a massive collection of data from agricultural sensors is being carried out, which will be
joined as part of the experiment to the Dataspace datasets, allowing the behavior of the platform to
be analyzed with real data loading experiments, and the benefits of optimized data management, via
dynamic resource management in the continuum. This dataspace, already implemented, will allow
the analysis of the performance derived from the exploitation of the data sets.

On the other hand, the integration with C-Cells and C-Cell migration using the Granny system is
a work-in-progress. The geospatial software stack is large and includes many transitive dependencies
as static libraries. Every single one of this dependencies needs to be cross-compiled to WebAssembly
too, and this is a sometimes arduous process. Once the cross-compilation process is finished, we
should be able to transparently migrate geospatial MPI applications from the edge to the cloud (or
the other way around) in response to changes in demand.

Page 65 of 77

HORIZON - 101092646 CloudSkin
30/06/2024 RIA

5.4.3 Why this use case needs the compute continuum?

A dataspace, understood as a software platform for the controlled exchange of data between users
and services, including direct reception from sensors, can benefit from a continuum infrastructure.

While the agricultural Dataspace focuses on the study of the complexity of data use and sharing,
it can serve as a use case for the analysis of continuous computing services. Due to the large volume
of data that may require processing in the processes of loading, sharing and managing data in the
Dataspace, you will directly benefit from the possibility of dynamic allocation of resources and ser-
vices in the continuum, actively exploiting its adaptive advantages, for instance, by keeping data at
the edge data servers but exfiltrating some CPU-bound tasks to the cloud.

Lastly, the calculation of vegetation indexes using C-Cells and MPI necessitates the cloud- edge
computing to navigate the trade-off between data locality and compute resources’ availability. First,
when there are not many images to process, it makes sense to run the MPI application where the
images are located. However, the parallelism available at the data source may be limited, and a
bottleneck when we have more images to process. At this point it may be adequate to live migrate
the running MPI processes to a cloud-grade machine with more available parallelism.

5.4.4 Where AI helps in this use case?

In the case of adaptation to the continuum, AI can be used for the dynamic selection and management
of resources necessary for the processing of data in the Dataspace.

Additionally, and in a more global way, AI could be applied to the analysis and exploitation of
information shared by an agricultural and environmental Dataspace in multiple ways. For instance,
AI can be used to optimize scarce resources such as water or electricity consumption, using machine
learning algorithms to achieve sustainable crop management.

In terms of the continuum, as in the rest of use cases, AI can be used to optimize two main aspects:
1. Task placement, i.e., decide where (edge or cloud) to process the agriculture processing tasks (e.g.,
sensor data processing, NDVI index calculation, radiation calculation, etc.), given the availability of
computing resources at the edge; and 2. Scaling, i.e., decide upon horizontally scaling the resources
at the edge with on-demand cloud resources to support all the allocated tasks.

5.4.5 Experiments, KPIs and benchmarks

The specific use case KPIs (ucKPIs) are defined in Table 15.

Table 15: Summary of use case-specific KPIs for agriculture.

ucKPI Description
ucKPI1:Apdex Score The Apdex score of the main web pages of the Dataspace should be greater

than 0.85 (good).
ucKPI2: Time to First
Byte (TTFB)

The time required to request information from the server and to transfer the
information that was requested should be below 1 second.

ucKPI3: C-Cell Execution
Overhead

Executing geo-spatial software running MPI with C-Cells must have
negligible performance overheads.

ucKPI4:
Cloud-Continuum
Execution Overhead

Live-migrating geo-spatial software across the cloud continuum must have
limited overhead, and should always improve end-to-end execution time
compared to not migrating at all, and re-executing.

To validate our contributions, we propose the following experiments:

• Experiment 1. Validation of the agricultural Dataspace. The validation of the agricultural
Dataspace has been carried out objectively, as an experiment of functionality, usefulness and
performance for the use of the data. This experiment includes loading experiments and creating
datasets, performing performance analysis and loading functionality with both static data and
data coming from an external service.

Page 66 of 77

HORIZON - 101092646 CloudSkin
30/06/2024 RIA

• Experiment 2. Continuum integration analysis. The major goal of this experiment is to run
a vegetation index software using geo-spatial images and MPI using C-Cells, and live migrate
parts of the application from one machine to another one.

5.4.6 Early results

Experiment 1. Validation of the agricultural Dataspace. A PoC has been released that facilitates the
negotiation and understanding of the data, establishing a strong basis for the application of AI and
development of services applied to agriculture and environmental analysis. The PoC runs within a
container instance at the KIO Networks edge datacenter.

By now, the validation of the Dataspace is still work-in-progress. As a first key metric, we plan
to measure user satisfaction using the Apdex12 score. This score is an industry standard to measure
the performance of enterprise applications. The Apdex method converts many measurements into
one number on a uniform scale of 0 to 1, namely 0 = no users satisfied, 1 = all users satisfied. This
metric can be leveraged to report on any source of end-user performance measurements for which a
performance objective has been defined. The key idea is to use this score by stating a goal for how
long a specific application transaction or request must take. Those transactions are then labeled as
failed, too slow, tolerating (sluggish), or satisfied (fast) requests.

Figure 57: Dataspace performance metrics.

The metrics in Fig. 57 provide insight into the initial performance characteristics of the Dataspace,
considering a low-load production environment and a single container. This information serves as
an online basis for analyzing Dataspace access performance before and after applying performance
improvement mechanisms.

Early results reflect that the Dataspace is fast to connect and deliver initial code, although it began
rendering content with little delay. Initial tests do not detect security problems.

Furthermore, we will use other metrics such as the time to first byte (TTFB). The TTFB is the time
required to request information from the server and to transfer the information that was requested.
In simple terms, it is the time from the point where you navigate to a web page through to when it
starts to render. This period of time includes the server request, which can differ according to internet
connection and location; the time needed to process a request or form a response; and finally the time
needed to send the response back to the client.

Return time equals 40% of the total TTFB. The slower the TTFB, the more time it will take for your
user to view any content on your site.

The waterfall diagrams in Fig. 58 and Fig. 59 demonstrate low TTFB and good performance of the
Dataspace. The greatest delays are the loading of external content, derived from components of the
backpack.

Experiment 2. Continuum integration analysis. In this second experiment we run the GRASS
geo-spatial software suite to calculate vegetation indexes on satellite images using C-Cells executing
MPI code. The first part of the experiment studies the baseline overheads of executing the application
using C-Cells instead of MPI processes.

12https://www.apdex.org/

Page 67 of 77

https://www.apdex.org/

HORIZON - 101092646 CloudSkin
30/06/2024 RIA

Figure 58: Waterfall view.

Page 68 of 77

HORIZON - 101092646 CloudSkin
30/06/2024 RIA

Figure 59: Dataspace waterfall initial tests.

Page 69 of 77

HORIZON - 101092646 CloudSkin
30/06/2024 RIA

6 Description of testbeds implementation and setup

To realise the use cases in the project, it is essential to establish the continuum infrastructure. Non-
surprisingly, this involves the deployment of various software components over the corresponding
continuum resources. This section provides a detailed description of these processes for each of the
use cases.

6.1 Testbed for the mobility use case

The testbed is located in Castellolí Parcmotor Circuit. More specifically, for the CloudSkin project
and mobility use cases, cloud-edge hardware have been defined:

• Cloud (Control Room): Two virtual machines have been deployed in Lenovo SR650 servers
running VMware vSphere to create different virtual machines (VMs) for various services and
apps (referred to as the “Local Cloud”) with the purpose of running services in “the cloud.”

• Edge (Pole): Node 1, A Samsung Wisenet PNO-9080R camera captures real-time images from
a specific area of the circuit and sends these images to other devices via the RTSP protocol for
analysis. Additionally, an SE350 edge server has been deployed in Node 1 with the purpose of
running services at “the edge.” Node 1 also features an energy control and management system
called ORION.

For the software stack in the testbed, we mainly use NearbyOne orchestrator platform, which is
responsible for the service onboarding and life-cycle management (LCM) of cloud-native apps and
infrastructure at a global scale, across the edge-to-cloud continuum. NearbyOne Orchestrator plays
the role of the multi-cluster orchestration engine in CloudSkin. The NearbyOne solution leveraged
in CloudSkin is mainly composed of:

• The NearbyOne Orchestration Platform, the main component of the solution, is in charge of
performing all tasks related to the orchestration of applications and infrastructure.

• The Nearby Blocks are distributed components that encapsulate logic and code for different
application-specific functionalities.

• The NearbyOne observability stack, built upon cloud-native open-source technologies, and
designed to efficiently collect, transport, and aggregate telemetry information from the under-
lying infrastructure.

• The NearbyOne Northbound Interface (NBI) Orchestration API, to enable the communication
with the Learning Plane .

Overall, the architecture is shown in Fig. 60. CNX provides the edge and cloud infrastructures
and the camera, and NearbyOne provides mechanisms to automate and orchestrate the infrastructure
located in Castelloli, and the deployment of components, such as the monitoring stack, the learning
plane, or the mobility use case applications. In particular, NearbyOne will manage the set of sites, i.e.,
the SE350 edge server and the two virtual machines in the private cloud (control room). Each site has
been provisioned with a Kubernetes system to manage containerized applications. The NearbyOne
controller itself has been deployed in a public cloud, in Amazon Web Services (AWS).

Page 70 of 77

HORIZON - 101092646 CloudSkin
30/06/2024 RIA

Figure 60: Testbed and deployment architecture for mobility usecase.

6.2 Testbed for the metabolomics use case

The METASPACE orchestrator in production runs on an AWS EC2 r6a.2xlarge instance, with 8 vCPU
and 64 GB of memory. The system uses the Amazon S3 object storage service to store the annotated
molecules as .png images and intermediate results. Final annotation results are saved to PostgreSQL
and AWS Elasticsearch for indexing and rapid searching.

Regarding the off-sample service, there is one daemon running on the METASPACE orchestrator,
referred to as “update” daemon, which handles the off-sample classification of the incoming datasets.
In this case, a dataset is nothing but a collection of .png images outputted in the annotation step of the
pipeline. Datasets are enqueued into a message queue and are consumed by four off-sample threads.
Each thread groups the images of the dataset into batches of 32 images and posts each batch to the
AWS ECS service via an HTTP endpoint. To not overload the inference containers, every off-sample
thread manages up to 8 concurrent synchronous batches. Inference containers have 1 vCPU and 2GB
RAM. Fig. 61 illustrates the pre-project off-sample service implementation.

To scale out to large datasets, the AWS ECS abides by the following auto-scaling policy:

• By default, there is one ECS container up at all times.

• If total CPU usage exceeds 80% for more than two minutes, the auto-scaler adds four additional
containers. This scaling keeps going until the maximum of nine containers is reached.

• Conversely, if CPU usage drops below 40%, two containers are recycled.

Page 71 of 77

HORIZON - 101092646 CloudSkin
30/06/2024 RIA

Save results

AWS S3

Object Storage

PN
G

PN
G

{labe
l: on

, pro
b: 0.

21}

PN
G

PN
G

PN
G

PN
G

PN
G

PN
G

PN
G

PN
G

PN
G

ds
x

ds
x

PN
G

ds
1

ds
2

ds
3

CPU>80%

AWS EC2 Container

Metaspace

AWS ECS
Container (CTR)

Inference

Update daemon

Off-sample
thread

batches of 32 imagesResults

HTTP
Endpoint

Off-sample
thread

Off-sample
thread

Off-sample
thread

+4 CTR

Additional
AWS ECS Containers

{labe
l: of

f, pr
ob: 0

.96}

Message Queue

CPU<20%

CPU>80%
+4 CTR
Max. 9

-2 CTR
Min. 1

CPU<20%

-2 CTR

Figure 61: METASPACE off-sample architecture.

For Lithops Serve, we prepare two testbeds: 1.- A cloud-only testbed, and edge-only testbed built
upon K8s. The specs of each testbed are the following:

Cloud-only testbed: This testbed comprises one AWS EC2 t2.micro instance (1 vCPU; 1GB of RAM)
to host the Lithops Serve orchestrator (Batch Manager, Resource Provisioner, etc.) and AWS Lambda
functions provisioned with 2 vCPUs and 3 GB of memory each to operate as the executor instances.
Also, the testbed uses AWS S3 for function communication, logging and the storage of results.

Jobs can be configured by adjusting:

• Number of executors: The number of serverless functions in the pool. For our early results, the
number of serverless functions was upper bounded by a maximum of 900 concurrent functions.

• Batch size: The number of images per batch, set to 32 by default.

Page 72 of 77

HORIZON - 101092646 CloudSkin
30/06/2024 RIA

Figure 62: Kubernetes (K8s) testbed at URV for Lithops Serve.

Edge-only testbed: This testbed uses an on-premises K8s cluster from URV that comprises a total of
456 CPUs and 548 GB of memory. As the executor instances, Lithops Serve launches pods of 2vCPUs
and 3GB memory to be equivalent to the above AWS Lambda executors. As storage backend, this
testbed installs MinIO object store, which is very convenient since it shares the same API of AWS S3.
Fig. 62 shows the K8s edge tested.

SCONE testbed: to test the early stages of confidential computing on Lithops Serve, a local minikube
Kubernetes cluster was created on a single machine. The machine has an Intel Xeon CPU E-2186G @
3.80GHz with 6 Cores, with the Intel SGX architecture extension, and 30 GB RAM. For the preliminary
experiment, each Kubernetes pod needs at least 6GB of SCONE HEAP to be created. This means
that a maximum of 4 executors can and 1 master be used for now. The Docker Image used for the
K8s testbed gone through SCONE framework to be compatible with Intel SGX. The experiment was
conducted in 3 types of execution as the following:

• scone-nofork: SCONE enables the execution to run in a hardware mode. Meaning it runs on
the actual Intel SGX enclave hardware. Here, the experimental forking feature is disabled.

• scone-dbgfork: SCONE enables the execution to run in a hardware mode. It also runs on the
actual Intel SGX enclave hardware. Here, the experimental forking feature is enabled. Due to
this reason, log level was also needed to be set to DEBUG. Theoretically, this reduces performance
due to more verbose logging.

• sconesim-fork: SCONE runs the test in a simulation mode. This means that it does not utilize
the hardware enclave, only on top of the SCONE runtime with simulated Enclave behaviour.
This is useful to debug a performance degradation caused by the process of converting a Docker

Page 73 of 77

HORIZON - 101092646 CloudSkin
30/06/2024 RIA

image to an SCONE-compatible one. Most of the time, the performance in simulation mode can
be regarded as the best possible performance for such image.

6.3 Testbed for the CAS use case

In terms of testbed infrastructure (see Fig. 63), the cluster used in the NCT use case PoC is built with
Dell PowerEdge R750 servers with Intel Xeon CPUs using VMWare VMs. Each VM was given eight
vCPU cores, 16GB of RAM, and 250GB of local server NVMe SSD storage. A 100TB NAS server was
also used to provide NFS remote storage for performance evaluation. A set of 4 VMs were connected
using Kubernetes, with Pravega deployed within the cluster.

Moreover, to compare against a cloud infrastructure, we have also executed video streaming
experiments on AWS Elastic Kubernetes Service (EKS). Specifically, the EKS cluster is formed by 3
EC2 i3en.2xlarge instances (acting as Kubernetes nodes) with 2 local NVMe drives each. We used
the Rancher Local Volume provisioner [24] plus some scripts to provision local volumes for Bookies,
which are the component in charge of the write-ahead log for Pravega.

In both cases, we deploy Pravega as follows: 1 Zookeeper instance, 1 Pravega Controller instance,
1 Pravega Segment Store instance, and 3 Bookkeeper instances. Pravega is configured to use 1 data
replica in Bookkeeper per event stored, which we is good enough for video analytics use cases. We
use for comparison the latency of NCT AI inference jobs w/wo a GPU.

Figure 63: Testbeds provided to support the CAS use case.

6.4 Testbed for the agriculture use case

The testbed for this use case has been deployed at KIO Networks. This partner has a data center on
which it deploys virtual data center solutions.

More specifically, the underlying hardware that will allow the experiments on the infrastructure
defined in Fig. 13 are Cisco servers - UCSB-B200-M4 - UCS B200 M4 Blade Server, racked in a server
chassis. The virtualization platform used is VMware ESXi, 7.0.3, 23307199, and for the initial scope
of testing, logical restrictions of 30 Mbps bandwidth, 100 Gb and 2 vCPUs have been established.

To enable dynamic resource management and analysis, the platform is deployed on Kubernetes,
and includes C-Cells as a means for executing legacy MPI code and migrating tasks between the edge
and the cloud.

Page 74 of 77

HORIZON - 101092646 CloudSkin
30/06/2024 RIA

7 Conclusions

This document has detailed the architecture of the CloudSkin platform as well as the interplay among
its software components to culminate in the creation of a exportable cognitive computing continuum.
The architecture provides the all the software components to enable other use cases as it implements a
cognitive plane, a universal execution layer, and AI-enabled infrastructure. The delivrable have also
introduced the early PoC prototypes for the use cases, outlined the different functional requirements
and KPIs, and finally provided early results of the different technologies.

Page 75 of 77

HORIZON - 101092646 CloudSkin
30/06/2024 RIA

References

[1] A. Zakai, A. Haas, A. Rossberg, B. Titzer, D. Gohman, D. Schuff, J. Bastien, L. Wagner, and
M. Holman, “Bringing the web up to speed with webassembly,” in ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI), (Barcelona, Madrid), 2017.

[2] “Intel software guard extensions,” 2022.

[3] A. Baumann, M. Peinado, and G. Hunt, “Shielding applications from an untrusted cloud with
haven,” in 33rd ACM Transactions on Computer Systems (TOCS), ACM, 2015.

[4] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin, C. Priebe, J. Lind, D. Muthukumaran,
D. O’Keeffe, M. L. Stillwell, D. Goltzsche, D. Eyers, R. Kapitza, P. Pietzuch, and C. Fetzer,
“SCONE: Secure linux containers with intel SGX,” in 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 16), (Savannah, GA), pp. 689–703, USENIX Associ-
ation, 2016.

[5] N. Computing, “Nearbyone edge orchestrator.” https://www.nearbycomputing.com/
wp-content/uploads/2021/08/NearbyOne-Product-Data-Sheet-v2.0.pdf, 2021.

[6] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning: Challenges, methods, and
future directions,” IEEE Signal Processing Magazine, vol. 37, no. 3, pp. 50–60, 2020.

[7] The Linux Foundation, “Kubernetes.” https://kubernetes.io/, 2020.

[8] J. Sampe, P. Garcia-Lopez, M. Sanchez-Artigas, G. Vernik, P. Roca-Llaberia, and A. Arjona, “To-
ward multicloud access transparency in serverless computing,” IEEE Software, vol. 38, no. 1,
pp. 68–74, 2021.

[9] S. Shillaker and P. Pietzuch, “Faasm: Lightweight isolation for efficient stateful serverless com-
puting,” in 2020 USENIX Annual Technical Conference (USENIX ATC 20), pp. 419–433, USENIX
Association, July 2020.

[10] P. Stuedi, A. Trivedi, J. Pfefferle, R. Stoica, B. Metzler, N. Ioannou, and I. Koltsidas, “Crail:
A high-performance i/o architecture for distributed data processing.,” IEEE Data Eng. Bull.,
vol. 40, no. 1, pp. 38–49, 2017.

[11] A. Klimovic, Y. Wang, P. Stuedi, A. Trivedi, J. Pfefferle, and C. Kozyrakis, “Pocket: Elastic
ephemeral storage for serverless analytics,” in 13th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 18), (Carlsbad, CA), pp. 427–444, USENIX Association, 2018.

[12] “Prometheus,” 2023.

[13] J. Sampé, G. Vernik, M. Sánchez-Artigas, and P. García-López, “Serverless data analytics in
the ibm cloud,” in 19th ACM/IFIP Middleware Conference Industry (Middleware’18), pp. 1–
7, 2018.

[14] P. Liu, G. Bravo-Rocca, J. Guitart, A. Dholakia, D. Ellison, and M. Hodak, “Scanflow: An end-
to-end agent-based autonomic ml workflow manager for clusters,” in Proceedings of the 22nd
International Middleware Conference: Demos and Posters, Middleware ’21, (New York, NY,
USA), p. 1–2, Association for Computing Machinery, 2021.

[15] P. Liu, G. Bravo-Rocca, J. Guitart, A. Dholakia, D. Ellison, and M. Hodak, “Scanflow-k8s: Agent-
based framework for autonomic management and supervision of ML workflows in kuber-
netes clusters,” in 2022 22nd IEEE International Symposium on Cluster, Cloud and Internet
Computing (CCGrid), pp. 376–385, 2022.

[16] “Pravega.” https://cncf.pravega.io.

Page 76 of 77

https://www.nearbycomputing.com/wp-content/uploads/2021/08/NearbyOne-Product-Data-Sheet-v2.0.pdf
https://www.nearbycomputing.com/wp-content/uploads/2021/08/NearbyOne-Product-Data-Sheet-v2.0.pdf
https://kubernetes.io/
https://cncf.pravega.io

HORIZON - 101092646 CloudSkin
30/06/2024 RIA

[17] R. Gracia-Tinedo, F. Junqueira, T. Kaitchuck, and S. Joshi, “Pravega: A tiered storage system for
data streams,” in Proceedings of the 24th International Middleware Conference, pp. 165–177,
2023.

[18] “Gstreamer.” https://www.nct-heidelberg.de/en/the-nct.html, 2024.

[19] “Pravega - gstreamer connector.” https://github.com/pravega/gstreamer-pravega, 2024.

[20] R. Gracia-Tinedo, F. Junqueira, B. Zhou, Y. Xiong, and L. Liu, “Practical storage-compute elastic-
ity for stream data processing,” in Proceedings of the 24th International Middleware Conference:
Industrial Track, pp. 1–7, 2023.

[21] Y. Yang, L. Zhao, Y. Li, H. Zhang, J. Li, M. Zhao, X. Chen, and K. Li, “Infless: a native serverless
system for low-latency, high-throughput inference,” in 27th ACM International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS’22), (New
York, NY, USA), pp. 768–781, Association for Computing Machinery, 2022.

[22] A. P. Twinanda, S. Shehata, D. Mutter, J. Marescaux, M. De Mathelin, and N. Padoy, “Endonet:
a deep architecture for recognition tasks on laparoscopic videos,” IEEE Transactions on Medical
Imaging, vol. 36, no. 1, pp. 86–97, 2016.

[23] E. Caron and R. Gracia-Tinedo, “The nanoservices framework: Co-locating microservices in
the cloud-edge continuum,” in 2023 IEEE 31st International Conference on Network Protocols
(ICNP), pp. 1–6, IEEE, 2023.

[24] “Greasy software user’s guide.” https://github.com/rancher/local-path-provisioner,
2023.

Page 77 of 77

https://www.nct-heidelberg.de/en/the-nct.html
https://github.com/pravega/gstreamer-pravega
https://github.com/rancher/local-path-provisioner

	Executive summary
	Introduction
	Main innovations
	Purpose of this document
	Means of verification

	Architecture specifications
	Global Architecture
	Execution Workflow
	Where is the AI? A Distributed Learning Plane
	Functional Specifications
	Software components.

	Early prototypes
	Platform prototypes
	Learning Plane (LP) prototype
	C-Cells prototype
	GEDS prototype

	Use case prototypes
	Nearby Orchestration Platform
	Lithops Serve
	Pravega Streaming for NCT
	Agricultural Dataspace
	Granny: Granular Management of Scientific Applications with C-Cells

	Use cases
	Use Case: Mobility
	Overview
	Status of the use case at M18
	Why this use case needs the compute continuum?
	Where AI helps in this use case?
	Experiments, KPIs and benchmarks
	Early results

	Use Case: Metabolomics
	Overview
	Status of the use case at M18
	Why this use case needs the compute continuum?
	Where AI helps in this use case?
	Experiments, KPIs, and benchmarks
	Objective 1: Early results
	Objective 2: Early results

	Use Case: Computer-Assisted Surgery (CAS)
	Overview
	Status of the use case at M18
	Why this use case needs the compute continuum?
	Where AI helps in this use case?
	Experiments, KPIs, and benchmarks
	Early results

	Use Case: Agriculture
	Overview
	Status of the use case at M18
	Why this use case needs the compute continuum?
	Where AI helps in this use case?
	Experiments, KPIs and benchmarks
	Early results

	Description of testbeds implementation and setup
	Testbed for the mobility use case
	Testbed for the metabolomics use case
	Testbed for the CAS use case
	Testbed for the agriculture use case

	Conclusions

