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1 Executive summary

This deliverable presents an updated and consolidated overview of the CloudSkin platform, focusing
on the reference implementation of its architectural building blocks within WP2: Architecture and
Software Validation. It provides a coherent description of the whole platform architecture and the
interplay among its software components, all contributing to the realization of a cognitive computing
continuum across heterogeneous Cloud–edge environments.

A key objective of this deliverable is to position CloudSkin within the broader European cloud–edge
ecosystem. To this end, the platform architecture and its core technologies are explicitly aligned with
the EUCloudEdgeIoT (EU-CEI) reference architecture. Specifically, CloudSkin maps its components
to the EU-CEI Building Blocks, ensuring consistency with emerging European guidelines, fostering
interoperability with other continuum platforms, and contributing validated implementations. This
alignment strengthens CloudSkin sustainability beyond the project lifetime and reinforces its role as
a practical instantiation of EU-CEI architectural principles.

At its core, CloudSkin implements a composable, three-layer architecture that cleanly separates
concerns while enabling tight cross-layer optimization:

• The Infrastructure layer (L1) provides high-performance, tiered data management through
components such as GEDS, Pravega, MinIO, and Nexus, supporting both batch-oriented and
streaming workloads with low latency, elasticity, and resilience across cloud and edge sites.

• The Execution layer (L2) delivers a universal execution abstraction, allowing legacy code to
run anywhere in the continuum. This layer combines WebAssembly-based C-Cells, Kubernetes
pods, with optional confidential computing enabled through Trusted Execution Environments
(TEEs) and SCONE. Advanced features like adaptive virtualization and live migration enable
workloads to scale and move dynamically across heterogeneous resources.

• The Orchestration layer (L3) hosts the Learning Plane, the cognitive backbone of the platform.
By continuously collecting telemetry and system state, training models and issuing predictions,
the Learning Plane enables AI-driven orchestration, proactive resource provisioning, smart
placement, and adaptive service migration across the cloud–edge continuum.

A defining characteristic of CloudSkin is its emphasis on modularity. All platform component are
deployable on Kubernetes, forming a uniform substrate across cloud, edge, and IoT environments.
This approach avoids monolithic designs and instead promotes independently deployable, reusable
software components that can be composed into end-to-end workflows.

The deliverable also elaborates on the core integration points that unify the platform, including
Kubernetes-based orchestration, object storage as a shared data layer, and a robust observability stack
using Prometheus, Grafana, and NearbyOne. Together, these integration points enable a closed-loop
control system where telemetry-driven insights inform the Learning Plane, orchestration decisions
propagate across multiple sites, and workloads continuously adapt to evolving conditions

Finally, this document outlines the application deployment workflow supported by CloudSkin,
demonstrating how diverse workloads—ranging from MPI applications and video analytics pipelines
to batch inference workflows—are packaged, deployed, monitored, and dynamically optimized across
the cloud-edge continuum. By combining multi-orchestration support, portable execution formats,
unified storage abstractions, and AI-driven decision-making, CloudSkin delivers an end-to-end, smart
platform capable of sustaining performance, security, and efficiency in highly dynamic cloud–edge
environments.

In summary, this deliverable consolidates the architectural vision, reference implementation, and
integration strategy of CloudSkin, providing a mature and standards-aligned foundation for future
extensions, large-scale adoption, and long-term impact within the European cloud–edge computing
landscape.
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2 Summary of D2.3 CloudSkin: Architecture Specs and Early Prototypes

This section provides a concise overview of the architectural foundations and early platform insights
previously delivered in the earlier architecture deliverable. Since “D2.5 Reference Implementation of
Architectural Building Blocks” builds upon that work, this summary revisits the essential elements
that shaped the design and validation strategy of the CloudSkin platform.

In short, the earlier deliverable provided the first complete description of the CloudSkin platform
architecture and the interactions among its major software components. Also, it introduced the vision
of a cognitive Cloud–edge continuum capable of adapting to dynamic conditions through AI-driven
orchestration, unified execution environments, and instrumented storage technologies.

Core Innovations

The following innovations formed the conceptual basis for the platform:

• IN1 – Cognitive Learning Plane. Introduction of novel AI/ML-based techniques to optimize
workloads, resources, energy, and network traffic in a “holistic” manner for a rapid adaptation
to changes in application behavior and data variability. This materialized in the definition of
a “Learning Plane” that, in cooperation with the application execution framework [IN2] and
the Cloud continuum infrastructure [IN3], can enhance the overall orchestration of Cloud-edge
resources. This plane represents the incarnation of the cognitive cloud, where decisions on the
cloud and the edge are driven by the continuously obtained knowledge and awareness of the
computing environment through AI, and particularly, neural networks and statistical learning,
taking the challenge of enabling these methods into low-power edge devices.

• IN2 – Universal Execution Abstraction. A unified and secure execution layer enabling “stack
identicality” across the continuum. By leveraging WebAssembly (Wasm) [1] along with Trusted
Execution Environments (TEEs), the platform allows traditional HPC and Cloud software stacks
(e.g., MPI, OpenMP) to run seamlessly on remote edges with near-native performance and
strong data-in-use protection.

• IN3 – Instrumented Storage Infrastructure. Definition and development of a first set of storage-
level abstractions, observability and dynamic configuration hooks to support complex Cloud-
edge scenarios that require real-time performance, adaptive data-tiering, and improved fault-
tolerance, all driven by the Learning Plane [IN1].

Platform Validation and Use Cases

The former deliverable also described the initial validation strategy, including:

• Early Proof-of-Concept (PoC) prototypes for the four representative use cases: 5G automotive,
metabolomics, computer-assisted surgery, and agriculture;

• Cloud-edge experimentation environments and first testbed results;

• A reference set of Key Performance Indicator (KPIs) targeting performance equivalence with
Cloud-only execution, important reduction of Cloud offloading, real-time analytics, accelerated
serverless processing, secure automated TEE deployment, microsecond-scale data access, and
low-overhead data-tiering.

Role of this Summary in D2.5

The insights and architectural principles summarized here establish the foundation upon which the
present deliverable D2.5 builds. While the earlier deliverable report focused on conceptual, partially
developed architecture, preliminary prototypes, and initial validation criteria, D2.5 moves toward
the final realization of these architectural building blocks, providing their reference implementation
and demonstrating their maturity within the CloudSkin platform.
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This summary therefore serves as a bridge between the early architectural vision and the fully im-
plemented components documented in this deliverable.
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3 Architecture specifications

3.1 Overview

The current computing paradigm is characterized by a significant imbalance, with an estimated 80%
of data processing and analysis centralized in Cloud data centers, and only 20% using edge resources.
This model reinforces a strategic dependency on non-EU Cloud providers and inhibits the European
digital economy from fully capitalizing on the agility, low-latency, as well as data sovereignty benefits
offered by edge computing.

In response to this challenge, the CloudSkin project seeks to develop a cognitive platform for the
cloud-edge continuum that intelligently orchestrates heterogeneous resources. By leveraging AI, the
platform will autonomously optimize the allocation of workloads, ensuring they are processed in the
most efficient and context-appropriate location, whether in the core cloud or at the network edge.

Though promising, this approach introduces unique challenges for developers and infrastructure
providers. Unlike clouds, edge computing lacks standardized development guidelines and essential
services, such as resource managers, universal execution abstractions, scalable storage, and Cloud-
edge workflow management. Consequently, developers must independently decide how to manage
resources, split workloads, and offload tasks from cloud to edge, a complex design space with many
options. This leads to the following key architectural insight:

Traditional task-offloading models are often treated in isolation, even though they address
overlapping challenges. Viewing cloud and edge computing as part of a unified compute
continuum frees developers from the constraints of siloed paradigms.

Achieving this objective requires a concerted, multidisciplinary effort. The CloudSkin platform
aims to break the silos of isolated computing models by providing a reference implementation of the
cognitive continuum.

3.2 Means of verification

The three innovations in the project will be validated in real settings using the general KPIs defined
in Table 1. Each use case contribute other specific KPIs, but the above KPIs constitute a representative
reference validation platform (RVP) for the project.

3.3 Global Architecture

The EU-CEI (EUCloudEdgeIoT.eu) initiative defines a reference architecture intended to serve as a
standard for the computing continuum. Specifically, EU-CEI identifies eight categories referred to as
Building Blocks (BBs), which represent the fundamental technical capabilities required to operate
applications across the continuum [2].

CloudSkin, as an active member of the EU-CEI initiative, shares its core motivations and goals.
In the final stages of the project, it has become increasingly important to align and map CloudSkin
architectural components and technologies onto the EU-CEI reference architecture. The main reason
is that this mapping ensures coherence with European guidelines, strengthens interoperability and
compatibility across European continuum platforms, and contributes to the broader standardization
efforts within the EU computing ecosystem.

The aim of this mapping is twofold. First, it represents a solid step toward positioning CloudSkin
within emerging European standardization efforts after the project ends. Second, CloudSkin aims to
contribute directly to the EU-CEI initiative by providing:

• Concrete implementations of the Building Blocks (BB) based on real testbeds that demonstrate
their use; and

• Refinements of these BBs informed by the technological advances in the project.

Table 2 presents a summary of this mapping effort. In CloudSkin, infrastructure, orchestration,
and intelligence are designed to be loosely integrated, minimizing the overlap of EU-CEI Building
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Table 1: Primary KPIs for validating the CloudSkin platform.

Means of verification & KPIs

• KPI1: Delivering equivalent performance of instrumented Cloud-edge programs compared
with centralized Cloud (≈ 1X performance).

• KPI2: Reduction of cloud offloading (> 50%), while amortizing edge resources and saving
communication bandwidth.

• KPI3: Achieving real-time processing in edge data analytics, at least in one use case.

• KPI4: Cloud-edge cells startup times at least 10% faster than containers.

• KPI5: Execution of complex software stacks such as MPI, and OpenMP “as is” with
Cloud-edge cells at close to native speeds despite virtualization (≈ 1X performance).

• KPI6: Automatic conversion of legacy applications into confidential TEE-enabled
Cloud-edge cells (zero development effort).

• KPI7: Microsecond data access latency despite virtualization and adaptive scaling.

• KPI8: Automated data-tiering and allocation with very low impact on performance (<1%).

• KPI9: At least 2x acceleration of workload processing with serverless computing.

• KPI10: Transparent migration of execution contexts and application state across
Cloud-edge sites with < 10% service disruption.

• KPI11: Sustained low-latency streaming (sub-50 ms) with high-throughput ingestion for
edge video/IoT pipelines.

• KPI12: Successful orchestration and monitoring of heterogeneous serverless, containerized,
and WebAssembly workloads via a unified interface.

• KPI13: Coordinated multi-site orchestration with consistent lifecycle management across
clusters, including deployment, migration, and policy enforcement.

• KPI14: In-transit data transformations, buffering, semantic annotation, and intelligent
routing with < 5% added latency to the original storage operations.

Blocks (BBs) across multiple technological layers. Nonetheless, some BBs inherently span technolog-
ical layers. For instance, resource management and application orchestration operate across levels.
Typically, Kubernetes manages low-level container orchestration, while the Learning Plane, together
with AI-based BBs, drives high-level decisions on task placement, workload migration, and resource
allocation across the Cloud-edge continuum.

This design pattern is consistently applied in other platform components. For instance, Lithops
Serve leverages Kubernetes to orchestrate the deployment of confidential inference containers, while
the Learning Plane dynamically determines the appropriate number of containers to provision. By
combining low-level container orchestration with high-level AI-driven resource provisioning, Lithops
Serve can efficiently scale batch inference workloads across the Cloud-edge continuum, optimizing
resource utilization and maintaining service quality.
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Table 2: Mapping of EU-CEI Building Blocks to CloudSkin implementation

EU-CEI Building Blocks CloudSkin Implementation
Security and Privacy Built-in infrastructure mechanisms. CloudSkin leverages confidential

containers through SCONE to allow standard Docker applications
(Python, Java, etc.) to execute in SGX enclaves without source-code
modifications, providing hardware-enforced isolation and
per-container memory encryption keys. As part of this BB, the project
combines confidential containers with WebAssembly to implement
secure C-Cells, memory-safe, lightweight, and portable sandboxed
applications with a controlled interface to OS services, allowing
unmodified or legacy applications to run securely while supporting
encryption, attestation, and filtered communications.

Trust and Reputation CloudSkin enhances trust and reputation in the continuum by
leveraging confidential containers through SCONE and secure C-Cells
based on WebAssembly. This ensures that users and infrastructure
providers can trust that applications execute securely and reliably,
while sensitive data remains protected, supporting accountability and
reputation management across federated and multi-stakeholder
environments.

Data Management Adaptive and optimized management of ephemeral and persistent
data across the continuum. L1 [Infrastructure layer] provides efficient
storage abstractions to support diverse workloads, including
monolithic applications, microservices, and streaming computations,
ensuring low-latency I/O for performance-critical tasks.

Resource Management Kubernetes manages the low-level orchestration of standard
containerized workloads, while CloudSkin leverages additional
fine-grained runtime orchestrators for C-Cells to efficiently handle
parallel applications implemented with multi-threading (e.g.,
OpenMP) or multi-processing (e.g., MPI). These low-level
orchestrators address limitations of traditional cloud schedulers,
which cannot dynamically scale multi-threaded applications or
manage fragmentation caused by statically allocating multi-process
applications to virtual machines.

Orchestration The AI-enabled orchestration layer (L3) identifies optimal
provisioning, placement, and partitioning strategies between Cloud
and edge. At its core, the Learning Plane extracts knowledge from
continuum components to provide recommendations, predictions, and
inferred information for global system optimization, including task
scheduling, resource allocation, and storage orchestration.
By combining Kubernetes, specialized AI and low-level WebAssembly
orchestrators, and the Learning Plane, CloudSkin delivers a
multi-layer orchestration framework capable of managing
heterogeneous resources and diverse workload types, from
containerized applications to parallel HPC-style tasks, with
fine-grained elasticity and global system optimization.
The project leverages multi-cluster orchestration platforms, combining
Kubernetes with high-level service orchestrators (e.g., NearbyOne
Orchestrator) and monitoring stacks for closed-loop automation.

Continued on next page
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Table 2 – continued from previous page
EU-CEI Building Blocks CloudSkin Implementation
Network CloudSkin adopts a multi-layer infrastructure with uniform interfaces

and protocols to enable seamless workload balancing at runtime.
Further, CloudSkin enhances network support by providing dynamic
service discoverability across multi-site infrastructures. Services are
registered with a DNS-based solution, enabling seamless migration
between cloud and edge nodes without manual reconfiguration.
Routing rules and service endpoints are automatically updated by the
orchestrator during migrations, ensuring low-latency connectivity. The
system supports mobility and dynamic deployment scenarios,
allowing applications to move across heterogeneous environments
while maintaining availability and network efficiency. This approach
reduces service downtime and improves user experience during
runtime migrations.

Monitoring and
Observability

CloudSkin implements a multi-layer observability stack to monitor
containerized services across the Cloud-Edge Continuum. The stack
integrates Prometheus, Thanos, Grafana, and MinIO for scalable
multi-cluster monitoring. Observer and Observee blocks collect and
aggregate metrics from edge and cloud clusters, supporting long-term
storage and global queries. This enables real-time insight into system
health, workload performance, and connectivity. Observability data
feeds the Learning Plane for intelligent decision-making, enabling
closed-loop automation, anomaly detection, and predictive
management of service migrations.

Artificial Intelligence (AI) The Learning Plane embeds AI-driven intelligence across L3
[orchestration], L2 [execution], and L1 [infrastructure] layers to
enable proactive and adaptive management of the Cloud-Edge
Continuum. It continuously collects telemetry data from edge and
cloud nodes, including application performance, resource usage, and
network metrics, and feeds this into ML-based models for workload
characterization, anomaly detection, and QoS prediction. Leveraging
predictive analytics, the engine supports proactive service migration,
dynamic scaling, and workload redistribution to optimize latency,
throughput, and resource utilization.
By integrating with orchestrators and the Learning Plane, it enables
closed-loop automation and decision-making, ensuring that services
are deployed, migrated, and managed efficiently across heterogeneous
environments while maintaining security, reliability, and QoS.

Execution1 This new building block highlights the novelty of C-Cells, a
lightweight, portable, and adaptive WebAssembly-based
virtualization environment. C-Cells enable secure execution of
unmodified applications across heterogeneous Cloud and edge nodes,
transparently leveraging hardware isolation (e.g., Intel SGX) or
acceleration where available, and supporting rapid scale-up/down of
compute units.

Additional BBs. Importantly, CloudSkin adds a crucial missing Building Block: Execution. Any computing-
continuum platform must provide a flexible execution environment that allows applications to run across the
continuum with minimal modification. This is highlighted in italics in Table 2.

In CloudSkin, this is exemplified by two WebAssembly-powered platforms: C-Cells, providing lightweight
execution for continuum applications, and GEDS, enabling an independent computing layer for specialized
workloads:

• Secure C-Cells provides a protected runtime for Wasm applications using Intel SGX TEEs. The two-way
sandbox ensures that: 1. Wasm protects co-resident applications from unauthorized code or data access;

1Indicates a new BB introduced in CloudSkin.
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and 2. SGX enclaves protect applications from tampering or data leaks. The OS is considered potentially
hostile, while enclave memory is encrypted and isolated.

• GEDS provides an integration layer that enables Wasm code to leverage advanced storage features. By
extending the runtime interface beyond the minimal WebAssembly System Interface (WASI) capabilities,
GEDS allows applications to access persistent volumes, cloud storage, and OS-level I/O transparently,
without requiring modifications to the Wasm code. This ensures legacy and new applications can utilize
rich storage services across the continuum.

We remember here that WASI provides a uniform API across OSs, delivering virtualization, sandboxing,
and access control, with capabilities for file systems, networking, time, event polling, and randomness. To turn
Wasm into a truly seamless, cross-platform runtime spanning cloud and edge servers, and IoT devices, extra
enhancements are needed, which is exactly the gap that CloudSkin fills. Fig. 1 provides a mapping between
BBs to CloudSkin layers (L1–L3).

Data Management
Storage abstractions, low-latency 

I/O, Pravega, GEDS, Nexus 

Security and Privacy
Confidential containers,

SCONE, C-Cells

Execution
WebAssembly-based lightweight execution 
across cloud-edge, C-Cells, GEDS-Wasm

Orchestration
AI-enabled orchestration,

Learning Plane, multi-layer 
orchestration

Network
Multi-site service 

discovery for seamless
application migration 

Monitoring and 
Observability

Prometheus-Thanos-
Grafana stack feeds 

Learning Plane

Resource Management
Kubernetes + fine-grained runtime 

orchestrators (C-Cells)

Trust and Reputation
Confidential containers + sandboxed 

execution with capabilities, 
accountability across continuum 

L1

L2

L3

Figure 1: Mapping of building blocks (BBs) to CloudSkin layers and key functions across the cloud-
edge continuum, highlighting infrastructure, execution, orchestration, and cross-layer capabilities.

3.3.1 Architecture overview.

As introduced in D2.3, the CloudSkin platform implements a composable and three-layeredcloud continuum
platform, integrating heterogeneous, federated, and collaborative computing resources. Its final architecture is
illustrated in Figure 2, highlighting how infrastructure, execution, and orchestration layers interact to support
dynamic service deployment and management. We provide a short recap of their responsibilities:

• L3. Orchestration layer (AI-enabled Orchestration BB). CloudSkin orchestration layer leverages the
“Learning Plane” to make AI-driven decisions on resource provisioning, placement, and partitioning
across Cloud and edge. It extracts insights from system components to provide recommendations and
predictions for global optimization, including resource allocation, containerization, virtualization, and
storage management.

• L2. Execution layer (Execution & Security BBs). This tier includes a universal execution environment,
enabling unmodified applications to run anywhere in the Cloud-edge continuum. WebAssembly-based
C-Cells and hardware support such as TEEs (e.g., Intel SGX) enable confidential processing, hardware
acceleration, and fast, lightweight execution for diverse workloads.
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Figure 2: Layered Architecture for the CloudSkin platform.

• L1. Infrastructure layer (Infrastructure & Data Management BBs). The infrastructure layer delivers
high-performance storage abstractions, supporting monolithic applications, microservices, as well as
streaming tasks. Efficient low-latency I/O ensures that fast-executing tasks in L2 are not bottlenecked,
preserving performance across the Cloud-edge continuum.

As one of the most common software architectures, a layered approach introduces many benefits. First, it
provides a clear separation of concerns, where each software layer performs a specific role. It also promotes the
isolation of changes, meaning that future modifications to the implementation of a layer will not impact other
layers, as long as the APIs between them are adhered to. For instance, Learning Plane agents can directly call
the Kubernetes API to launch pods with specific configurations, enabling intelligent, automated deployment
and scaling of workloads without affecting the underlying infrastructure or orchestration logic.

3.3.2 Orchestration (layer L3)

As illustrated in Figure 2, at the top lies the L3. Orchestration layer, which contains the Learning Plane: the
intelligence core of the CloudSkin platform. This layer is responsible for a range of AI-driven functions:

• Collecting state and telemetry data,

• Modeling the system,

• Managing a model catalog, and

• Delivering recommendations, predictions, and forecasts.

The Learning Plane employs sensors, actuators, and predictive pipelines to anticipate changes in service QoS,
trigger proactive application migrations, and optimize task placement and resource allocation. By combining
continuous monitoring, intelligence, and multi-site orchestration, the L3 layer delivers a holistic, adaptive, and
autonomous control plane capable of orchestrating diverse workloads across the CloudSkin ecosystem.

The complete list of components in this layer is:

• Kubernetes (Open-source, CNCF): A popular container orchestration platform designed to automate
deployment, scaling, and lifecycle management of containerized applications. It provides abstractions
for pods, services, and workloads. Kubernetes is foundational for hybrid and multi-cloud deployments,
offering extensibility via custom resource definitions and operators for domain-specific automation.

• NearbyOne (Open-source, ETSI; Proprietary, Nearby Computing): An orchestration, automation, and
lifecycle management platform purpose-built for distributed edge-to-cloud environments. It delivers
unified orchestration capabilities spanning infrastructure, connectivity, and application layers, operating
over specialized functional components. By creating tight integration between domains that are typically
siloed, NearbyOne enables advanced cross-layer orchestration, improving performance, efficiency, and
service innovation. Its single-pane-of-glass interface allows operators to rapidly provision edge nodes,
allocate resources, and manage their complete lifecycle as a service.

• Lithops (Open-source, Apache): Python-based multi-cloud serverless computing framework enabling
transparent execution of massively parallel functions and data analytics across diverse backends. Lithops
abstracts cloud compute (FaaS, VMs, containers) and storage systems (object stores, file systems) into a
unified programming model, allowing developers to write regular Python code that executes remotely
at scale. Its modular architecture supports major clouds and container platforms, low operational costs,
and efficient parallel data processing.
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3.3.3 Execution (layer L2)

In the L2. Execution layer lies the worker machines that execute the (Wasm-)containerized applications in
forms of C-Cells, serverless functions, and Kubernetes pods. One important feature of the virtualization layer
is ① Live migration support: C-Cell execution must be able to be interrupted and transferred from one host
to another across the heterogeneous Cloud-edge continuum with no (or little) disruption to the application
execution. Another key feature is ② Adaptive virtualization, which means that optionally and transparently,
depending on the data being processed, C-Cells must support confidential execution with TEEs [3] (e.g., Intel
SGX [4]). The CloudSkin platform uses SCONE [5] for this aim.

The complete list of components in this layer is:

• SCONE (Community Edition, SCONTAIN): Open-source confidential computing platform that enables
secure execution of sensitive applications inside containers using Trusted Execution Environments (TEEs).
SCONE provides transparent encryption, attestation, and isolated runtime environments that protect
data and code throughout their lifecycle, even in untrusted cloud infrastructures.

• C-Cells (Open-source, Apache): Distributed WebAssembly-based execution units designed to support
elastic and portable execution of parallel applications across cloud and edge clusters. More specifically,
C-Cells units can be dynamically created, scaled, and migrated at runtime. They enable vertical scaling
by adding more execution units to multi-threaded workloads within a node, and horizontal scaling by
migrating multi-process workloads across nodes without restarting the application. Fast snapshotting
and WebAssembly-based isolation allow new C-Cells to be launched efficiently, enabling responsive
adaptation to resource availability and minimizing fragmentation.

• GEDS WebAssembly-based Units (Open-source, Apache): WebAssembly execution runtime integrated
within the Generic Ephemeral Data Store (GEDS) in layer L1 to enable high-performance, sandboxed
data processing close to the storage layer. While WebAssembly ensures portability and minimal memory
overhead, its standard I/O interface is limited to basic POSIX-like operations, restricting I/O to the local
file system. GEDS WebAssembly-based units address this limitation by interposing on standard I/O
hostcalls, directing read and write operations to GEDS for in-memory storage, with automatic tiering to
long-term storage.

3.3.4 Infrastructure (layer L1)

In the L1. infrastructure layer can be found a number of storage services to keep up with I/O-intensive
applications (e.g., Computer-Assisted Surgery). This includes ① Streaming workloads, where data streams
must be durable, consistent, and elastic, but also ② Batch jobs with performance critical I/O operations, such
as data shuffling or sharing of data between tasks. As depicted in Fig. 2, CloudSkin handles both types of
workloads with the help of Pravega streams, IBM GEDS, MinIO storage services.

The complete list of components in this layer is:

• GEDS (Open-source, Apache): A fast, distributed, and multi-tiered data store specifically designed for
managing ephemeral and intermediate data across cloud and edge environments. GEDS provides low-
latency in-memory storage for transient datasets, while supporting automatic tiering to durable object
storage for longer-term retention. Its architecture enables efficient sharing of data between containers,
WebAssembly modules, and serverless functions, making it a key enabler for in-situ data processing and
ephemeral workflows.

• Pravega (Open-source, CNCF): A distributed streaming storage system that allows applications to store
unbounded sequences of bytes durably and elastically. Pravega streams provide high-throughput, low-
latency access to continuously generated data, while interfacing with GEDS to tier data to long-term
storage (LTE). Its design supports streaming analytics, real-time event processing, and video pipelines,
ensuring both scalability and durability across heterogeneous cloud and edge sites.

• Nexus (Open.source): Nexus is a programmable, policy-driven framework that enhances tiered stream-
ing storage in the continuum by adding value to data in transit. Classical tiered storage offloads cold
data as opaque chunks. However, Nexus introduces buffering at the edge to mask network failures, se-
mantic annotation, data transformations, and intelligent routing based on performance, privacy, or cost
policies.

By exploiting the computational slack at chunk boundaries, Nexus performs these operations without
affecting real-time ingestion, enabling more reliable, efficient, and insightful data pipelines, particularly
for latency-sensitive, data-intensive applications such as surgical analytics and AI model training.
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3.4 Key Platform Integration Points

This section defines the minimal integration points that enable seamless interoperability across the CloudSkin
platform. It focuses on the essential connections between the core components, including the orchestration
layer, execution environments, Learning Plane, and underlying infrastructure, without prescribing detailed
implementation specifics.

By establishing clear interfaces and standardized communication patterns, these integration points ensure
that diverse technologies, ranging from containerized workloads and WebAssembly-based execution units to
AI-driven orchestration agents can operate cohesively. The goal is to provide a lightweight yet robust blueprint
that allows the platform to coordinate tasks, manage resources, and enable intelligent service migration across
the cloud-edge continuum while preserving modularity and extensibility.

The integration points are the following:

1. Kubernetes. CloudSkin leverages Kubernetes as the central container management platform, orchestrating
the deployment, scaling, and operation of both traditional and confidential containers. For C-Cells, we have
ensured that all system components for running them are fully deployable with Kubernetes. The reason is that
C-Cells has a proprietary live migration protocol that is not compatible with the Kubernetes API. Further, the
Learning Plane and and storage integrations have been made fully deployable with Kubernetes in order to
make the entire platform consistently manageable across cloud, edge, and IoT nodes.

As part of ongoing development, we are integrating GEDS Wasm-based containers with Kubernetes as a
replacement of traditional containers. In this setup, containerd serves as the high-level runtime, leveraging
lightweight shim processes to decouple container execution from the daemon, thereby ensuring reliability and
seamless upgrades. The ultimate goal of this integration is to enable WebAssembly applications to fully benefit
from the same lifecycle management, scheduling, and orchestration capabilities as traditional containers. This
effort includes the packaging of WebAssembly applications as OCI-compliant images2 in a container registry,
which allows Kubernetes to pull, instantiate, and scale them across the continuum.

2. Object Storage. An essential integration point within the CloudSkin platform is the use of object storage as
a universal communication and data exchange layer. Both C-Cells and Wasm-based execution units leverage
object storage to interact with the rest of the platform components and with each other. This is achieved either
directly via MinIO3, which provides a lightweight, S3-compatible, and Kubernetes-friendly storage backend,
or through GEDS integration for WebAssembly units, enabling advanced storage features transparently.

The same pattern extends to streaming applications: Pravega, integrated with GEDS, supports automatic
data tiering to S3 for cloud tasks that require exchanging large datasets or transient results. By centralizing both
batch and streaming data interactions through object storage, the platform ensures efficient, consistent, and
portable access to information across the cloud-edge continuum, while simplifying workflow orchestration
and data sharing between heterogeneous execution environments.

For instance, the GEDS S3/MinIO Endpoint provides essential primitives to interact with object storage
in CloudSkin. These operations are used by GEDS WebAssembly-based units to communicate and exchange
data:

• PUT Object Uploads data to a specified bucket and key. Supports both in-memory buffers and input
streams, with optional length specification:

– putObject(bucket, key, const uint8_t *bytes, size_t length)

– putObject(bucket, key, std::shared_ptr<std::iostream> stream, std::optional<size_t>
length)

• GET Object Reads data from a bucket and key. Supports direct memory access or streaming to an output
stream, with optional position and length for partial reads:

– readBytes(bucket, key, uint8_t *bytes, size_t position, size_t length)

– read(bucket, key, std::iostream &outputStream, std::optional<size_t> position,
std::optional<size_t> length)

These primitives provide the foundational interface for object storage operations, enabling persistent and
streaming data exchanges across the CloudSkin platform.

2https://tag-runtime.cncf.io/wgs/wasm/deliverables/wasm-oci-artifact/
3https://www.min.io/
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3. Observability. Following modern DevOps principles, observability is a first-class aspect of the platform,
providing continuous, actionable insights into system behavior, and enabling the Learning Plane to respond
rapidly and intelligently. In particular, Prometheus4 acts as the primary time-series engine, collecting metrics
from all the CloudSkin services, orchestration components, and Kubernetes workloads. Thanos5 extends these
capabilities with global querying and durable storage, ensuring a consistent view of the entire platform.

On top of this, CloudSkin incorporates specialized Grafana6 dashboards tailored to each subsystem. These
dashboards visualize the health, performance, and runtime dynamics of applications, resource provisioning
policies, and WebAssembly-based execution environments in real time. To put it in a nutshell, the combination
of Prometheus metrics, Thanos federated storage, and Grafana analytics provides a comprehensive end-to-end
observability stack that supports operators, enables debugging and optimization, and empowers the Learning
Plane to perform intelligent, data-driven orchestration across the cloud–edge continuum.

NearbyOne Observability Stack. CloudSkin also leverages the NearbyOne Observability Stack to provide
seamless monitoring across multiple clusters and deployment tiers. This stack brings together Prometheus,
Thanos, Grafana, and MinIO into a scalable and fault-tolerant observability layer designed for heterogeneous
cloud–edge clusters. To achieve this, Observer and Observee Blocks are deployed across the continuum: Ob-
servee Blocks expose per-cluster metrics, whereas the Observer Block aggregates the metrics, ensures long-
term retention, and enables unified cross-site queries. This architecture ensures efficient monitoring even
under tight edge-resource constraints and provides the telemetry backbone required for proactive decision-
making in the Learning Plane, as demonstrated in the automotive use case.

Table 3: CloudSkin Key Integration Points.

Integration Point Description
Kubernetes CloudSkin leverages Kubernetes as the central container management

platform to orchestrate deployment, scaling, and operation of
traditional containers. All system components, including the Learning
Plane, C-Cells and storage integration, are fully deployable with
Kubernetes, ensuring consistent management across cloud, edge, and
IoT nodes.
GEDS Wasm-based containers are integrated to benefit from container
lifecycle management, scheduling, and orchestration capabilities,
packaged as OCI-compliant images for deployment across the
continuum.

Object Storage Object storage acts as a universal communication and data exchange
layer. C-Cells and Wasm-based execution units interact with each
other and platform components via MinIO or GEDS integration.
Streaming applications, such as Pravega, leverage automatic object
storage data tiering for large datasets. GEDS S3 and MinIO endpoint
primitives, including putObject and read/readBytes, provide
foundational interfaces for persistent and streaming data exchanges
across the CloudSkin platform.

Observability CloudSkin employs the NearbyOne Observability Stack integrating
Prometheus, Thanos, and Grafana for scalable, multi-cluster
monitoring. Observee Blocks expose per-cluster metrics while the
Observer Block aggregates metrics, stores long-term data, and enables
unified cross-site queries. Specialized Grafana dashboards visualize
the health and performance of each subsystem. This design ensures
efficient monitoring under constrained edge resources and provides a
telemetry backbone for proactive Learning Plane-driven orchestration.

3.4.1 Composable Software Platform.

With all system elements, from C-Cells to Learning Plane services and GEDS-backed storage adapters, being
deployable on Kubernetes, CloudSkin evolves into a fully composable software platform. Instead of relying

4https://prometheus.io/
5https://thanos.io/
6https://grafana.com/

Page 15 of 52

https://prometheus.io/
https://thanos.io/
https://grafana.com/


HORIZON - 101092646 CloudSkin
29/12/2025 RIA

on monolithic deployments or tight integration boundaries, CloudSkin structures its core functionality around
modular software components that can be independently packaged, versioned, deployed, and orchestrated.
Kubernetes provides the uniform substrate where these components coexist, interact, and scale, whether they
are traditional containers, confidential containers, or WebAssembly-based execution units.

By enabling components to be reused and composed across different data flows and computational paths,
this architecture ensures that teams can innovate independently while still benefiting from shared abstractions
and consistent implementations. The platform thereby achieves a balance between autonomy and coherence:
individual components can evolve at their own pace, yet they integrate seamlessly into higher-level workflows.
This promotes development efficiency, simplifies system evolution, and increases agility when adapting to new
operational requirements or deploying the platform across diverse environments.

In this model, composability becomes a foundational principle. Each software component can be combined
into end-to-end services without altering the underlying deployment or operational model. Kubernetes acts
as the unifying layer that coordinates these components across cloud, edge, and IoT devices, ensuring reliable
scheduling, scaling, and lifecycle management.

As GEDS WebAssembly containers become fully integrated into this ecosystem, CloudSkin expands its
composability even further, enabling lightweight, portable execution units to participate alongside container-
based components within a single, cohesive platform.

4 Application Deployment Workflow in CloudSkin
The CloudSkin platform must support a highly diverse compute and orchestration landscape, spanning from
large centralized clouds to mobile edge locations and embedded devices. The mobility use case exemplifies
this heterogeneity: services must execute across edge sites, and private clouds, all while maintaining strict QoS
guarantees for video analytics and RAN control loops.

In the continuum, depending on a single orchestrator or a single execution model is neither feasible nor
desirable. Instead, CloudSkin embraces a multi-orchestrator, multi-runtime approach. Despite CloudSkin uses
Kubernetes as its central container management platform, it often composes a hierarchy of orchestrators, with
Kubernetes serving as the foundational layer beneath higher-level workflow and multi-site orchestrators. As
discussed earlier, these are:

• Lithops7 lets developers deploy tasks as serverless functions in the cloud, or run the same code inside
containers on Kubernetes clusters when working on-prem or at the edge.

• NearbyOne [6] acts as a multi-site orchestration layer: it manages application and service lifecycles across
many edge and cloud locations, relying beneath the hood on Kubernetes to deploy and run workloads.

In this way, CloudSkin combines the strengths of container orchestration through Kubernetes with the
flexibility of serverless and edge-aware multi-site orchestration via Lithops and NearbyOne, enabling a unified,
scalable, and portable deployment framework.This is shown in Figure 3.

Despite the diversity of orchestrators and runtimes, the CloudSkin platform is able to adapt to different
execution workflows by enabling developrs to compose its system components. This composable architecture
ensures that tasks can be deployed, managed, and optimized seamlessly across heterogeneous Cloud-edge
environments. A typical workflow consists of several major phases, which we describe in detail below. A
rapid overview of a typical execution workflow is given in Figure 4.

4.1 Application Packaging Into Containers, WebAssembly Modules, or Functions

The first phase involves transforming an application into an artifact that can be deployed anywhere across the
continuum. CloudSkin supports three primary packaging formats:

• WebAssembly modules: For lightweight execution or sandboxed environments, CloudSkin supports
WebAssembly, ideal for C++/Rust workloads or scenarios where portability and isolation are of paramount
importance. Through the C-Cells subsystem, WebAssembly runtimes support monolithic binaries (e.g.,
OpenMP and MPI programs), enabling HPC-style code to run safely at the edge.

• OCI-compliant containers: Containers encapsulate all runtime dependencies, such as libraries and VMs
for Python, Java, etc., providing a stable execution environment across heterogeneous infrastructures.
For instance, NCT surgical models run as containers.

• Serverless functions: Lightweight tasks packaged as functions (e.g., Python or JavaScript) are supported
through FaaS frameworks such as Lithops, which are especially relevant for event-driven and batch
pipelines.

7https://github.com/lithops-cloud/lithops
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Figure 3: CloudSkin orchestration: Kubernetes as the runtime substrate; Lithops and NearbyOne as
higher-level orchestration layers for serverless, edge, and multi-site deployments.

Each packaging format has their corresponding runtimes provided by CloudSkin, ensuring safe execution
regardless of where the workload is ultimately deployed. The use of open standards such as OCI for containers,
WASI for WebAssembly modules, and cloud-agnostic APIs for serverless functions, guarantees portability
across all orchestrators in the platform.

Alternatively, WebAssembly modules can be packaged as OCI-compliant artifacts8 in a container registry.
These artifacts abide by the standard OCI image layout and consist of multiple layers: a configuration layer
specifying the entrypoint (typically a .wasm file), the Wasm module layer itself, and optional additional layers
containing configuration files, libraries, or other resources. Unlike traditional Docker images, the manifest file
is primarily used to reference these layers and ensure compatibility with OCI-compliant tooling. By pushing
these OCI artifacts in a registry, Kubernetes or other OCI-aware orchestrators can pull, instantiate, and scale
WebAssembly modules consistently across the continuum. This approach is the one adopted to manage GEDS
WebAssembly containers. An example of manifest is:

Listing 1: Example of OCI-compliant Wasm image
1 {
2 "schemaVersion": 2,
3 "mediaType": "application/vnd.oci.image.index.v1+json",
4 "manifests": [
5 {
6 "mediaType": "application/vnd.oci.image.manifest.v1+json",
7 "digest": "sha256 :485 ee0f459ed27244372efd50eadf92011201f5a8ae5daf72cc0f829f2cb8a90",
8 "size": 707,
9 "annotations": {

10 "io.containerd.image.name": "ghcr.io/cloudskin/wasi -helloworld:latest",
11 "org.opencontainers.image.ref.name": "latest"
12 },
13 "platform": {
14 "architecture": "wasm",
15 "os": "wasip1"
16 }
17 }
18 ]
19 }

This also encompasses SCONE-enabled confidential containers, allowing seamless deployment using pod
8https://tag-runtime.cncf.io/wgs/wasm/deliverables/wasm-oci-artifact/
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Figure 4: Execution workflow for a video analytics application on CloudSkin.

.yaml specifications:

Listing 2: SGX-enabled test pod
apiVersion: v1
kind: Pod
metadata:

name: testpod
spec:

imagePullSecrets:
- name: sconeapps

containers:
- name: testcon

image: registry.scontain.com/user/cloudskin -images/test
env:

- name: SCONE_MODE
value: SIM

securityContext:
capabilities:

add: ["SYS_RAWIO"]

This pod leverages the SGX simulation mode (SCONE_MODE: SIM) and requires elevated capabilities (SYS_RAWIO)
to properly emulate trusted execution environments. The imagePullSecrets entry ensures access to private
SGX-enabled container images stored in the secure registry.

4.2 Submission to a CloudSkin-Compatible Orchestrator

After packaging, the developer delegates code execution to the appropriate orchestration layer or service. For
instance, the developer can rely on Lithops to run a sequence of tasks, whether packaged as container images
or deployed as serverless functions in AWS Lambda, or interact directly with the C-Cells distributed runtime
through its native interfaces such as faasmctl to upload the .wasm files from Docker container images. Each
orchestrator exposes its own execution abstraction: Kubernetes manages containerized workloads through
declarative manifests, AWS-style FaaS platforms execute function artifacts, etc.

Although highly valuable, providing a unified interface for all type of computations would be extremely
challenging, as it requires reconciling fundamentally different execution models, native APIs, and scheduling
semantics. Managing serverless functions, containerized workloads, and WebAssembly modules into a single
unified interface can introduce complexity, increase the risk of misconfigurations, and make debugging more
difficult across cloud, edge, and IoT environments. It should be noted that Lithops can leverage Kubernetes
as a compute backend, while Faasm9, the WebAssembly-based system underpinning C-Cells, alrady provides
a minimal-effort path to enable Lithops to orchestrate complex WebAssembly workflows.

As an illustrative example, Lithops Serve, a novel serverless batch inference engine, uses Lithops to launch
multiple specialized instances of a Python runtime. This fleet of instances perform batch inference in parallel

9https://github.com/faasm/python
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or other AI-related tasks, running as serverless functions or as containers on-premises without requiring code
refactoring of any type. In this setup, Lithops is leveraged by a higher-level AI orchestrator to execute the
functions. Interaction with Lithops Serve is provided through a simple RESTful interface, which exposes an
authenticated POST endpoint for submitting tasks. Developers only need to code a Python script and invoke
the POST endpoint to submit a bach inference job. An example of inference code is provided below:

Listing 3: Example of task workflow using TaskManager
1 config_dict = {
2 ’load’: {’batch_size ’: 1, ’max_concurrency ’: 32},
3 ’preprocess ’: {’batch_size ’: 32, ’num_cpus ’: 4},
4 }
5

6 manager = TaskManager(config_dict=config_dict , logging_level=logging.INFO)
7

8 @manager.task(mode="threading")
9 def load(image_dict):

10 result_dict = {}
11 for key in image_dict:
12 print(f"Downloading image {key} from S3")
13 image_data = s3_client.download(key , s3_bucket=BUCKET)
14 print("Downloading image finished")
15 result_dict.update ({key: image_data })
16 return result_dict
17

18 @manager.task(mode="multiprocessing", previous=load , batch_format="bytes")
19 def preprocess(image_dict):
20 composed_transforms = transforms.Compose ([
21 transforms.Resize (256) ,
22 transforms.CenterCrop (224) ,
23 transforms.ToTensor (),
24 transforms.Normalize(
25 mean =[0.485 , 0.456, 0.406] ,
26 std =[0.229 , 0.224, 0.225]
27 ),
28 ])
29 result_dict = {}
30 for key , image_data in image_dict.items():
31 print("Transformation started", key)
32 image = Image.open(io.BytesIO(image_data)).convert(’RGB’)
33 tensor = composed_transforms(image)
34 result_dict.update ({key: tensor })
35 print("Transformation finished", key)
36 return result_dict

Multi-Site orchestration. A major strength of the NearbyOne orchestrator lies in its advanced multi-site
orchestration capabilities. Critical application lifecycle operations such as deployment, migration, and service
discoverability can be coordinated by the NearbyOne service orchestrator. Deployed in a separate Kubernetes
cluster, NearbyOne operates outside the edge–cloud continuum and functions as a multi-site, cloud-native
orchestrator that manages distributed continuum applications without directly hosting workloads. To this end,
it exposes a RESTful Northbound Interface (NBI) for external triggers, allowing systems and AIOps agents to
initiate migrations and orchestration workflows.

Communication with managed clusters is handled by lightweight NearbyOne agents deployed within each
site. These agents expose cluster capabilities, accept orchestration instructions, and enable declarative control
of workloads and infrastructure components, such as containers and .wasm modules. This design guarantees
consistent lifecycle management while preserving the autonomy of individual clusters.

These capabilities have been key to deploy the Learning Plane agents across cloud and edge sites. These
agents continuously monitor telemetry, evaluate policies, make AI-driven decisions, and trigger actions via the
NBI, such as migrating applications between clusters. By separating responsibilities between the orchestrator,
Learning Plane agents, and individual clusters, NearbyOne enables modular, event-driven, and scalable multi-
site orchestration across heterogeneous edge and cloud environments.

To wrap up, the fully-fledged orchestration capabilities of CloudSkin are:

• Orchestrator Abstractions:

– Kubernetes: manages containerized workloads via declarative manifests.
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– FaaS platforms: execute serverless function artifacts.

– Lithops: supports both cloud functions and containerized execution on Kubernetes, and optionally
on other compute backends, such as IBM Cloud Code Engine, AWS Batch, Google Cloud Run, and
Knative.

• Multi-Site Orchestration with NearbyOne:

– Coordinates deployment, migration, and service discoverability across clusters.

– Operates as a cloud-native orchestrator outside the edge–cloud continuum.

– Exposes a RESTful Northbound Interface (NBI) for external triggers.

– Uses lightweight agents at each site to control workloads and infrastructure declaratively.

• Learning Plane Integration:

– Agents monitor telemetry, evaluate policies, and trigger orchestration actions via the NBI.

– Supports AI-driven decisions such as dynamic application migration.

– Ensures modular, event-driven, and scalable multi-site orchestration.

• Unified Compatibility Layer: Minimal northbound API interfaces across orchestrators allow distributed
applications and the Learning Plane to operate across heterogeneous execution environments.

4.3 Integration with Object Storage, GEDS, and Pravega

A key enabler of portability and inter-component communication in CloudSkin is the use of object storage as a
universal data abstraction. Applications, including WebAssembly modules and containers, can read and write
data to object storage either directly using MinIO or through a WebAssembly-specific integration with GEDS.
This provides a consistent mechanism for sharing files and datasets across edge and cloud sites.

For streaming workloads, such as video analytics pipelines, CloudSkin taps into Pravega integrated with
GEDS. Pravega streams are automatically tiered to S3-compatible object storage when required, enabling large-
scale, durable data exchange without blocking the application.

The Pravega-GEDS integration uses the Hadoop File Sysetm (HDFS) API as the common interface: GEDS
already provides a Java library integrtaing HDFS, while Pravega supports HDFS as a long-term storage option.
To enable the integration, Pravega was extended with a new fs.hdfs.impl parameter, allowing administrators
to specify the HDFS binding class. For example, setting fs.hdfs.impl= com.ibm.geds.hdfs.GEDSHadoopFileSystem
enables Pravega to interact with GEDS directly. A Pravega Docker container including the GEDS libraries was
created for straightforward deployment in Kubernetes clusters. Detailed deployment instructions are avail-
able at https://github.com/cloudskin-eu/pravega-geds. Table 4 summarizes the characteristics of GEDS
and Pravega, along with a comparison to object storage and in-memory key-value stores.

4.4 Exposure to the Learning Plane, Telemetry and Migrations

Once deployed, applications become observable to the Learning Plane through telemetry aggregation. Metrics
include:

• Workload metrics (CPU/GPU utilization, memory footprint, I/O activity),

• Infrastructure state (network latency, bandwidth, node availability),

• Application-specific KPIs (frame rate, inference latency, throughput),

• Contextual information (mobility patterns, geographic placement).

The Learning Plane uses these inputs to produce QoS predictions for potential execution sites across the
continuum. These predictions feed resource provisioning and migration policies, either heuristic or machine-
learning–driven, that determine the most suitable place to run the workload. As historical traces accumulate,
predictions become more accurate, improving resource utilization and reducing SLA violations. For instance,
a QoS-aware migration policy for application migration can be described as:
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Table 4: Comparison of GEDS, Redis/Memcached, Object Storage, and Pravega.
Legend: KV = Key-Value; WORM = Write Once, Read Many; COS = Cloud Object Storage; NVMe =
Non-Volatile Memory Express; DRAM = Dynamic Random Access Memory.

Property GEDS Redis /
Memcached

Object Storage
(S3, Ceph, COS)

Pravega

Latency Microseconds
(DRAM),
low-ms for
remote reads

Microseconds–
1 ms

10–100 ms 1–10 ms

Throughput 20–30 GB/s
reads,
10–15 GB/s
writes (NVMe);
DRAM-speed
local I/O

Millions of
ops/s per node

High capacity
but lower
throughput for
small objects

High-
throughput
append-only
streaming

Scalability
Model

Elastic DRAM
→ NVMe →
Object Store;
metadata-driven
discovery; no
static pod
allocation

Horizontal
scaling via
sharding and
replicas

Virtually
unlimited
horizontal
scalability

Elastic segments
with automatic
scaling

Data Model /
Semantics

file + S3-like;
WORM; 1:1
mapping across
DRAM, NVMe,
backend;
supports
caching mode

Ephemeral
key-value store

Object-based
(buckets, blobs)

Append-only
streams with
strong ordering
and transactions

Durability Write-back
persistence to
S3/COS

Optional
durability
(Redis
AOF/RDB)

Strong
durability with
multi-zone
replication

Durable log
storage with
retention;
Write-back
persistence to S3

Access Model Local file paths
+ buffers;
remote reads via
network buffers;
automatic S3
import;
S3-cached mode
with chunking
and eviction

Network-based
KV operations

REST/HTTP-
based object
operations

Client libraries
for stream
readers/writers

Special Features DRAM-speed
I/O; NVMe
spillover;
sharable with
apps; no data
fragmentation;
allows
non-GEDS
consumers

Low-latency
caching;
optional
pub/sub (Redis)

Lifecycle
policies; optimal
for large objects;
extreme
durability

Exactly-once
semantics;
unified
streaming +
storage
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Listing 4: Learning Plane Policy for QoS Prediction and Migration Decisions
1 # Agent: Analyzing and Planning Strategy
2 # Components: Data -connector agent , NearbyOne Actuator
3

4 # --- Analyzing Strategy: QoS Predictions ---
5

6 WHEN intervalTrigger (5min , QoS_prediction(data))
7 IF successful_call
8 THEN runWorkflow("prediction -pipeline", data)
9

10 # --- Planning Strategy: Migration Decision ---
11

12 apiRequest("/analyze_qos")
13

14 IF app_cluster == "edge"
15 AND current_qos > 200ms
16 THEN Call(NearbyOneActuator : migrate_service)
17

18 ELSEIF app_cluster == "cloud"
19 AND current_qos < 45ms
20 THEN Call(NearbyOneActuator : migrate_service)
21

22 ELSE
23 THEN Nothing_to_do

Based on the Learning Plane recommendation, the orchestrator deploys or redeploys the application to the
selected node or platform. The granularity of this step varies:

• Coarse-grained migration: Moving a service from the public cloud to an edge cluster to reduce latency
and egress costs.

• Fine-grained node selection: Choosing between nodes with different accelerators (CPU vs GPU) or
secure execution enclaves (e.g., Intel SGX).

• Hybrid deployments: Splitting components across cloud and ege, for example, decoding on the edge
and inference in the cloud.

C-Cell migration. One important assess in the project is the ability to migrate C-Cells across the compute
continuum. The C-Cell runtime manages scaling and migration by temporarily interrupting execution at well-
defined control points. Two types of control points are defined: regular control points, which allow lightweight
coordination such as message handling or shared-memory updates, and barrier control points, which ensure
that the C-Cell has reached a consistent state with no in-flight messages or pending memory synchronizations.
Because barrier control points provide a safe global view of the application state, allmigration operations are
performed cooperatively when C-Cells reach these barriers. C-Cells supports two types of operations:

• Vertical scaling is achieved by launching additional C-Cells that share the same WebAssembly linear
memory, differing only in their stack allocations and entry points. This design enables the runtime to
expand or contract parallelism efficiently while maintaining consistency. Because vertical scaling only
occurs at barrier control points, the runtime can distribute work among C-Cells according to backend
semantics such as OpenMP threading or MPI ranks.

• Horizontal migration follows a similar principle. At a barrier, the runtime consults the Learning Plane
and applies a migration plan if required. Migration is performed by snapshotting the state of a C-Cell
(WebAssembly linear memory plus runtime metadata such as file descriptors) and restoring it in the
destination machine. Once all runtimes have prepared for the migration, the barrier is released and
execution resumes consistently across sites. This cooperative, barrier-driven mechanism ensures safe
and transparent movement of C-Cells across machines with minimal disruption to application execution.

4.5 Continuous Monitoring and Re-Evaluation

Once the application is running, CloudSkin enters a continuous control loop:

1. Monitor the workload and infrastructure state,

Page 22 of 52



HORIZON - 101092646 CloudSkin
29/12/2025 RIA

2. Evaluate whether the current placement still satisfies QoS objectives,

3. Predict impending violations,

4. Assess placement alternatives,

5. Trigger a new deployment plan if beneficial.

This feedback loop is essential for dynamic environments such as mobility scenarios, where workloads
and network conditions constantly fluctuate. Proactive migrations enabled by the Learning Plane significantly
reduce SLA breaches, optimize resource usage, and improve overall system resilience.
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Figure 5: Interaction workflow for the different system components.

4.6 Summary

To conclude, the CloudSkin platform provides an end-to-end workflow that spans packaging, orchestration,
data integration, and adaptive execution across the cloud–edge continuum. The points below summarize the
essential mechanisms and capabilities presented in this section.

• Multi-orchestrator integration: CloudSkin seamlessly combines Kubernetes, Lithops, and NearbyOne
to support containers, functions, and distributed multi-site deployments.

• Portable packaging formats: Workloads can be packaged as OCI containers, WebAssembly modules, or
serverless functions, ensuring portability across heterogeneous environments.

• Unified storage abstraction: MinIO, GEDS, and Pravega provide consistent object and streaming storage
interfaces for both cloud and edge sites.

• GEDS–Pravega interoperability: Integration via the HDFS API enables Pravega to use GEDS as an LTS
backend, with configuration-driven HDFS bindings for flexible deployment.

• Learning Plane connectivity: Applications expose telemetry that feeds QoS prediction algorithms and
AI-based decision-making for provisioning and migration actions.
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• C-Cell mobility and scaling: C-Cells enable both vertical scaling and safe horizontal migration at barrier
control points through cooperative snapshot-and-restore mechanisms.

• Multi-site orchestration with NBI: NearbyOne coordinates deployments and migrations across clusters
via a RESTful Northbound Interface and lightweight per-site agents.

• Continuous optimisation loop: CloudSkin continuously monitors execution, predicts potential QoS
violations, and triggers redeployments to maintain service guarantees across dynamic environments.

Figure 5 summarizes these interactions across the deployment of three applications: a MPI program (MPI),
a video analytics (VA) pipeline, and a batch inference (BI) workflow:

• Applications running in pods interact with MinIO to store and retrieve datasets, intermediate outputs,
and model artifacts. This includes torch tensors and images, telemetry logs, and video frames. MinIO
acts as a unified object-storage interface used by C-Cells, enabling transparent data sharing across cloud
and edge sites. Pravega supports streaming workflows and is integrated with GEDS for tiered, durable
storage. Data flows from Pravega → GEDS → MinIO when stream tiering or archival is required.

• On the edge, Lithops Serve serverless instances run inside SCONE TEEs to process a batch inference job.
The serverless instances use MinIO to read job inputs and persist inference results. The Video Analytics
(VA) container running on a GPU-enabled node pushes vide frames to Pravega→GEDS.

• Prometheus collects telemetry metrics from workloads, such as latency, throughput, and resource usage.
These metrics are forwarded to Thanos for long-term retention and remote querying. Grafana accesses
Prometheus-Thanos metrics to visualize application health, performance, and QoS trends.

• The Learning Plane consumes telemetry and storage metadata to predict QoS violations, and decide
whether to migrate or scale applications.

• Based on these decisions, the Learning Plane sends recommendations to the NearbyOne orchestrator,
which then triggers horizontal migrations by moving a pod between cloud ↔ edge, new deployments,
or resource adjustments.

In summary, the arrows depict a closed-loop system where:

• Data flows from apps → storage → compute.

• Telemetry flows from compute → Prometheus/Thanos → Learning Plane.

• Decisions flow from Learning Plane → NearbyOne → deployments/migrations.

• Workflows flow from developers → Lithops → compute nodes.

This forms an autonomous, AI-driven, multi-site orchestration cycle spanning the cloud–edge continuum.

5 Final Functional Specifications
Here, we provide the final functional requirements (FRs) for the CloudSkin platform. We summarize them in
Table 6. We also provide the FRs associated with each use case. Some of them have varied in the second half of
the project as early prototypes evolved to MVP (Minimum Viable Product) and include more features. Table 6
reflects the final and intended associations between the FRs and use cases as of M36 of the project.

To the very best of our knowledge, we see this set of FRs enough to accomplish the mission of CloudSkin,
while not falling in the trap of over-engineering the solution with unnecessary features that make the system
lose generality.

Further contextualization. Some FRs in Table 6 need further contextualization within the scope of the project:

• FR1 – Flexible Orchestration: Orchestration and management strategies vary significantly depending
on the use case, making a “one size fits all” approach impractical. For example, Kubernetes is ideal for
cloud-native containerized applications, Lithops [7] excels in serverless multi-cloud orchestration, and
NearbyOne [6] is specifically tailored for 5G and edge computing scenarios. Selecting the appropriate
orchestrator per workload ensures optimal performance and resource utilization.
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• FR5 – Heterogeneous Execution Support: Some applications do not require migration across the cloud–edge
continuum. In these cases, complex software stacks that are difficult to compile to WebAssembly, such as
PyTorch can be deployed as-is to maximize performance. Supporting FR5 also requires heterogeneous
architecture compatibility, including varying instruction sets and node types. Currently, WebAssembly
execution modes: interpreted, Ahead-of-Time (AoT) compiled, and Just-in-Time (JIT) compiled, are not
universally supported across all architectures, so careful selection per platform is necessary.

• FR6 – Sandboxed Multi-Tenant Execution: FR6 ensures that CloudSkin can execute sandboxed code
from different tenants within the same container, providing execution semantics equivalent to threads
and processes. This capability, in combination with FR4 (mobility and migration), enables both secure
and transparent movement of workloads across the continuum. WebAssembly is a key enabler here: it
provides sufficient generality to support continuum applications, lightweight deployment compared to
containers [8], small memory footprints, and minimal performance overhead, making it ideal for multi-
platform execution.

Table 6: Final functional requirements for the CloudSkin platform.
In this table, the four use cases are labeled as follows: 1. Mobility, for orchestrating applications in
cloud-edge and mobile environments; 2. Metabolomics, for spatial metabolomics analysis; 3. CAS,
for computer-assisted, edge-driven surgery; and 4. Agriculture, for managing and leveraging the
agriculture dataspace.

No. Functional requirement Software
layer(s)

Associated
use case(s)

Further context and
implications

FR1 Respond and adapt intelligently to
changes in application behavior
and data variability to optimize
where data is being processed (e.g.,
very close to the user at the edge,
or in centralized capacities in the
Cloud).

L3 Mobility,
Metabolomics,
CAS

This will require interfacing
with orchestrators to offer
automatic deployment,
mobility, and secure
adaptability of services from
Cloud to edge.

FR2 Ensure extensibility of the
AI-enabled control plane with new
Machine and Deep Learning
models to expand the reach of the
CloudSkin platform to other use
cases.

L3 All Interoperability challenges may
arise between computing
providers, orchestrators, and
the Learning Plane. Open
standards, interoperability
models, and open platforms
should be considered where
appropriate.

FR3 Collect and manage metrics and
telemetry to extract knowledge
from both the underlying
infrastructure and the
decision-making systems.

All All This will require developing an
interface to push telemetry data
to the Learning Plane. Standard
open-source monitoring and
alerting systems (e.g.,
Prometheus) should be
considered where appropriate.

FR4 Enable migration of execution
contexts and data in order to
facilitate cross-Cloud, Cloud-edge
and cross-edge workflow
execution to transparently
integrate the diverse compute
continuum resources.

All All Migration of execution contexts
and data needs to be
lightweight to make relocation
transparent to users. Services
may be self-migratable, require
independence from the
provider (FR5), and demand
trusted execution (FR7).
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No. Functional requirement Software
layer(s)

Associated
use case(s)

Further context and
implications

FR5 Provide an adaptive virtualization
layer that enables the seamless
execution of the same legacy code
across the whole continuum (e.g.,
both in an HPC cluster or at an
edge server).

L2 Metabolomics This requires the use of portable
super-lightweight containers
that can run anywhere from the
edge to the Cloud, e.g., based
on WebAssembly.

FR6 Virtualize execution memory such
that code from different suppliers
can safely execute side-by-side in
the same physical machine.

L2 Metabolomics This requirement calls for safety
guarantees such as Software
Fault Isolation (SFI) to protect
computations from security
breaches and other types of
failures, enforcing strict
boundaries between collocated
processes.

FR7 Ensure confidential processing of
data to make users confident that
their sensitive data will stay
private and encrypted even while
being processed in the Cloud and
edge.

L2 All This not only requires
confidential execution of native
code, but also of lightweight
WebAssembly containers to
comply with FR5.

FR8 Develop efficient Cloud and edge
storage services for efficiently
managing ephemeral data.

L1 CAS To improve I/O performance,
the storage service must also
support multi-tiering to achieve
the targeted performance at the
lowest possible cost, and make
data survive temporary failures
at the edge.

FR9 Integrate an elastic streaming
storage fabric to enable edge use
cases with stringent low-latency
streaming requirements, such as
real-time video analytics.

L1 CAS While auto-scaling mechanisms
for stream processing engines
exist, elasticity for data streams
in the storage is challenging,
but it is crucial to adapt to
changing data rates.

FR10 Provide a unified interface for
managing heterogeneous
serverless and containerized
workloads, enabling deployment,
execution, and monitoring of
distributed functions across cloud,
edge, and IoT environments.

L3 Metabolomics,
Agriculture

The system should support
diverse execution models and
APIs, allow parallel execution,
and minimize operational
overhead while preserving
security and portability.

FR11 Enable modular multi-site
orchestration of distributed
applications across cloud and edge
sites, coordinating deployment,
migration, and lifecycle operations
while preserving site autonomy.

L3 Mobility Orchestration should allow
external triggers for initiating
workflow actions, expose clear
APIs, and ensure consistent
application lifecycle
management across
heterogeneous and
geographically distributed sites.
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No. Functional requirement Software
layer(s)

Associated
use case(s)

Further context and
implications

FR12 Treat storage chunks as first-class
data units rather than raw bytes,
enabling runtime transformations,
buffering, routing, and semantic
annotation for enhanced data
management.

L1 CAS,
Metabolomics

Storage services should allow
in-transit processing of data
chunks, including compression,
encryption, metadata
annotation, and intelligent
routing to different storage
systems or compute nodes. This
enables more efficient,
privacy-aware, and
semantically rich data pipelines
while supporting real-time and
batch analytics.
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6 Reference implementation
Here, we provide the full description of the reference implementation of each layer in the project.

Table 7: List of platform components.

Name Layer Functional
Require-
ments

KPIs Role

Learning
Plane

L3 FR1, FR2,
FR3

KPI1,
KPI2

Learning Plane data-connector agent has capabilities
to connect orchestrators by writing customized
actuator (FR1), to call different ML inference
pipelines generated by different use cases (FR2), and
to connect telemetry and save predictions data to the
database (FR3).

C-Cells L2 FR4, FR5,
FR6

KPI1,
KPI4,
KPI5,
KPI10

Distributed WebAssembly-based execution units
designed to provide an adaptive virtualization layer
that enables the seamless execution of the same
legacy code across the whole continuum (FR5),
supporting elastic and portable execution of parallel
applications across cloud and edge clusters.
Execution memory is virtualized to allow code from
different suppliers to safely run side-by-side on the
same physical machine (FR6).

GEDS L1 FR8 KPI7,
KPI8

The Generic Ephemeral Data Store (GEDS) excels at
the efficient handling of temporary data created,
exchanged, and consumed by compute tasks of
complex, potentially multi-staged workloads.
Efficiency is achieved by direct integration of
application buffer management with the lowest tier
(Tier 0) of the multi-tiered GEDS.

NearbyOne L3 FR11 KPI10,
KPI3

NearbyOne is a cloud-native edge computing
platform designed explicitly for multi-site
orchestration, aligning directly with FR11. It
provides a unified, single-pane-of-glass control layer
that manages distributed edge and cloud platforms
while preserving the autonomy of each site.
Through its inter-node orchestration capabilities,
NearbyOne coordinates applications across multiple
edge nodes, allowing them to scale, migrate, or
adapt based on the Learning Plane. Distributed
“Nearby Blocks” extend functionality to each edge
platform, allowing new capabilities to be introduced
seamlessly and orchestrated at scale. Because
Nearby One relies on standard Kubernetes-based
orchestration and supports cloud-to-edge workload
portability, it satisfies FR11 by enabling coherent,
modular, and scalable orchestration of distributed
applications across geographically separated cloud
and edge sites.

Continued on next page
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Table 7 continued from previous page
Name Layer Functional

Require-
ments

KPIs Role

Lithops L3 FR10 KPI9,
KPI12

Python-based multi-cloud serverless framework
enabling transparent execution of massively parallel
functions and data analytics. It abstracts cloud
compute (FaaS, VMs, containers) and storage
systems into a unified programming model,
supporting major clouds and container platforms. In
line with FR10, Lithops provides a flexible
execution layer capable of orchestrating
heterogeneous workloads, ranging from serverless
functions to containerized applications, while
offering a consistent API for deployment, execution,
and monitoring. This enables scalable, parallel data
processing pipelines across cloud and edge
environments without requiring code refactoring.

SCONE L2 FR7 KPI6 Confidential computing platform enabling secure
execution of sensitive applications inside containers
using TEEs (FR7). SCONE provides transparent
encryption, attestation, and isolated runtime
environments to protect data and code, even in
untrusted cloud infrastructures. It has been used to
create confidential C-Cells with a two-level
sandboxing approach: an internal sandbox using
WebAssembly for memory safety, and an external
sandbox leveraging the enclave for strong hardware
isolation. Additionally, SCONE has been employed
to implement confidential workers for Lithops Serve
and Pravega, enabling secure execution of serverless
functions and streaming workloads across
heterogeneous cloud and edge environments.

GEDS
WebAssembly-
based Units

L1 FR5, FR6,
FR12

KPI14 W ebAssembly execution runtime integrated with
GEDS to enable high-performance, sandboxed data
processing near the storage layer. It interposes on
standard I/O hostcalls to redirect reads and writes
into GEDS in-memory, tiered storage, while
providing a unified abstraction for computational
storage across the continuum (FR5). The lightweight
WebAssembly sandbox enables near-data execution
(FR6), supporting fine-grained, low-latency compute
tasks directly within the storage path. In line with
FR12, these units transparently intercept local
file-system reads and writes, applying on-the-fly
transformations before routing the resulting data
into GEDS distributed storage, thus enabling true
computational storage workflows across the
continuum.

Continued on next page
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Table 7 continued from previous page
Name Layer Functional

Require-
ments

KPIs Role

Pravega L1 FR8, FR9 KPI7,
KPI8,
KPI11

Distributed streaming storage system that stores
unbounded sequences durably and elastically,
offering high-throughput, low-latency access.
Integrates with GEDS for tiered long-term storage
while supporting streaming analytics, real-time
event processing, and video pipelines across cloud
and edge sites. Its elastic storage fabric adapts
dynamically to varying data rates, automatically
scaling and partitioning streams to maintain
consistent performance under changing workloads,
thereby enabling latency-sensitive edge applications
such as live video analytics and real-time AI
inference.

Nexus L1 FR12 KPI14 Nexus is a programmable, policy-driven framework
that transforms tiered streaming storage into an
intelligent data management layer, treating storage
chunks as first-class units rather than raw bytes. It
provides in-transit processing capabilities including
dynamic buffering to handle network variability,
semantic annotation for downstream analytics,
on-the-fly data transformations such as compression,
encryption, and format conversion, and intelligent
routing based on performance, privacy, or cost
policies. These operations occur without impacting
real-time ingestion, enabling reliable, efficient, and
semantically rich pipelines for latency-sensitive,
data-intensive applications such as video analytics,
AI model training, and edge-cloud workflows.

Table 8: Mapping of CloudSkin components to functional requirements (FRs).

System Component FR
1

FR
2

FR
3

FR
4

FR
5

FR
6

FR
7

FR
8

FR
9

FR
10

FR
11

FR
12

Learning Plane ✓ ✓ ✓

C-Cells ✓ ✓ ✓

GEDS ✓

NearbyOne ✓

Lithops ✓

SCONE ✓

GEDS WebAssembly-based Units ✓ ✓ ✓

Pravega ✓ ✓

Nexus ✓

As shown in Table 8, each functional requirement (FR1–FR12) of the CloudSkin platform is addressed by
at least one component. This mapping demonstrates that the platform comprehensively covers all required
capabilities across the continuum, from AI-enabled orchestration to confidential execution, storage, streaming,
and computational data processing. By linking each FR to one or more components, the table shows how the
integrated software stack collectively fulfills the functional objectives of the platform.
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Table 10 summarizes the key deliverables of the CloudSkin project, detailing each software layer and the
responsible work package. Each deliverable represents a concrete outcome of the project, ranging from the
integration of the AI-enabled Learning Plane (D5.3) to reference implementations of the cloud-edge platform
(D4.3) and the underlying cloud-native infrastructure (D3.4).

Table 10: List of deliverables with full details of reference components.

Deliverable
no.

Deliverable name Software
layer

Work
Package

D5.3 Integration of the Learning Plane L3 WP5
D4.3 Reference implementation of Cloud-edge platform L2 WP4
D3.4 Reference implementation of Cloud native Infrastructure L1 WP3

Table 12: Reference Architecture Components with URLs

Component URL
Learning Plane https://github.com/cloudskin-eu/scanflow-data-connector

C-Cells https://github.com/cloudskin-eu/granny

SCONE https://github.com/scontain/scone

GEDS https://github.com/cloudskin-eu/GEDS

GEDS WebAssembly-based Units https://github.com/cloudskin-eu/GEDS_Wasm_Units

Pravega https://github.com/pravega/pravega

Nexus https://github.com/cloudskin-eu/nexus-nct-streamlets

NearbyOne https://github.com/cloudskin-eu/Mobility-use-case

Lithops https://github.com/lithops-cloud/lithops.

7 Reference Architecture Components
This section provides a more detailed description of the key components of the CloudSkin platform. For each
system component, we outline its overview, internal architecture, key features, and interfaces for integration
with other layers of the platform.

7.1 Learning Plane

7.1.1 Overview

The Learning Plane (LP) orchestrates workloads across the cloud-edge continuum using AI-driven decision-
making. It collects telemetry via sensors, applies ML inference pipelines for real-time reasoning, and leverages
actuators to implement adaptive actions. Serving as the central intelligence in the platform, the LP ensures
efficient, autonomous, and optimized resource management.

7.1.2 Architecture

The implementation architecture of the data-connector is shown in Figure 6. While the Learning Plane can be
viewed as an abstract entity encompassing all the CloudSkin predictive and decision-making capabilities, it
also includes a concrete reference implementation in the form of the data-connector. Acting as an LP agent, the
data-connector provides QoS predictions for application workloads and generates placement, migration, as
well as scaling recommendations for the orchestrator.

Its implementation builds on Scanflow-k8s [9][10], offering pre-configured deployments of prediction ML
models, metadata management, parameter tracking, a model registry, and an agent framework for autonomic
management. Developers only need to supply scenario-specific sensors and actuators. Listing 5 shows the
agent is watching the QoS predictions and having a policy of performance cost trade-off (i.e., performance/-
cost). If QoS constraints are satisfied, chooses the node with the best placement recommendation.
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Listing 5: Custom sensor to get app QoS predictions and enable recommendation policy
1 #example 1: watch app QoS predictions
2 @sensor(nodes =["predictor"])
3 async def watch_qos(runs: List[mlflow.entities.Run], args , kwargs):
4 qos = 0
5 input_data = get_qos ()
6 if input_data:
7 qos , node_index = choose_better_nodes(input_data)
8 if qos_constraints(qos):
9 await call_migrate_app(max_qos_index , "icresnet", "torch -deployment")

10 else:
11 logging.info("all machine can not achive qos sla , no actions")
12 else:
13 logging.info("no data in last check")
14 return max_qos

A detailed explanation of the LP and its integration with the use cases is provided in D5.3.

Figure 6: Implementation architecture of the data connector for the Learning Plane.

7.1.3 Key Features

• Learning Plane agents.

• Integration with ML inference pipelines.

• Telemetry collection and predictions storage.

• Support for multi-use case deployments (Mobility, Metabolomics, CAS).

7.1.4 Interfaces and Integration

The LP data-connector framework provides flexible sensors and actuators to interface with various CloudSkin
data plane components (e.g., Prometheus, MLflow, Nearby observability stack) and control plane components
(e.g., Kubernetes, NearbyOne, and Lithops). Depending on the scenario, the LP integrates different ML models
to generate predictions, including existing models such as Long Short-Term Memory (LSTM), as described in
D5.2, as well as new models introduced in D5.3.

In terms of use case integration, we highlight:

• In the mobility use case, the LP connects with the Nearby observability stack and NearbyOne, leveraging
regression and time-series models to enable intelligent, QoS-aware service migration.

• In the Metabolomics use case, the LP does not drive real-time decisions. Instead, it plays a critical role
behind the scenes, training two regression models: one to predict the aggregated initialization time for
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w serverless functions, and the other to estimate the total execution time required to process a job of r
metabolomics images using n serverless workers. Leveraging these predictions, the use case implements
a lightweight scheduler that selects the optimal number of workers to minimize overall job completion
time while staying within a predefined cost budget. This approach enables efficient, cost-aware scaling
of large-scale inference workloads, turning predictive insights into actionable resource optimization.

• In the CAS use case, the LP consumes latency metrics published by Pravega via Prometheus, along with
other relevant sys tem metrics, to drive auto-scaling decisions (e.g., adjusting the number of segment
stores). Actuation is straightforward, as Pravega Segment Store instances can be horizontally scaled
through Kubernetes APIs, such as via Custom Resource Definitions (CRDs).

7.2 C-Cells

7.2.1 Overview

C-Cells are a WebAssembly-based execution abstraction for CloudSkin’s cloud-edge continuum. The choice of
WebAssembly as intermediate representation makes C-Cells, by default, language- and hardware-independent.
C-Cells can execute code written in any programming language that supports cross-compilation to Wasm, and
can be executed in any architecture that can be targeted as an LLVM back-end.

C-Cells support communication via message passing and synchronization via shared memory. This makes
it possible for multiple C-Cells to co-operatively run distributed multi-process and multi-threaded programs.
C-Cells currently support the execution of applications written using the MPI and OpenMP programming
models, but this support could be extended in the future.

7.2.2 Architecture

C-Cells are executed as different OS threads in the same Linux process. C-Cell’s memory space is isolated
using Wasm’s sandbox, thus benefiting from Wasm’s spatial memory safety guarantees. C-Cells are further
isolated with a combination of control groups and network namespaces (see Figure 7). Wasm-sandboxed does
not have access to any resources of the host system, this prevents code executing in a Wasm module to make
any system calls to access the filesystem or the network. CloudSkin’s C-Cell runtime interposes on any such
call, including MPI and OpenMP calls, using control-points.

Granny core

threadsnet

C-Cell runtime

wasm_fd fd

5 42

fsLinux 

System call

MPI backend
MPI_*

POSIX backend
fd_*, mmap,...

OMP backend
__kmpc*, omp*

Control point
C-Cell

Application code
(WebAssembly)

Message mailboxes FD tables SHM mappings

ns cgroups

Thread + CGroup + Net NS

Figure 7: C-Cell overview.

A control-point is a lightweight software trap that allows the runtime to take over C-Cell execution with
minimal overhead. The context switch introduced by a control-point is that of a Wasm context switch, which
is comparable to a regular function call. Using control-points the host C-Cell runtime can provide its own
implementation of the system, MPI, or OpenMP call. We use this strategy to change the parallelism or the
distribution of OpenMP or MPI applications, respectively.
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Using control-points a C-Cell runtime can interpose on OpenMP calls to fork into a parallel execution, and
decide, at runtime, how many threads to use in this particular computation. We call this process vertical scaling
and it can be used to elastically scale a computation up or down depending on the system’s load. Similarly,
we can interpose on MPI calls and migrate MPI processes without losing in-flight messages, thus reducing
fragmentation and improving locality. We call this process horizontal migration.

7.2.3 Key Features

• Adaptive Virtualization. C-Cells support executing code written in a variety of programming languages
and targeting a variety of architectures. Most of these features come from WebAssembly itself, and we
extend them to, for example, support executing C-Cells inside Intel SGX enclaves.

• Secure Isolation. C-Cells offer lightweight virtualization, yet solid isolation guarantees. WebAssembly
provides memory safety, and resource isolation is achieved with a combination of control-groups and
network namespaces. This combination of isolation mechanisms allow C-Cells to boot fast, in less than
10 ms.

• Lightweight Interruption. C-Cells provide a lightweight interrupt mechanism in the form of control-
points. Control-points are triggered when application code makes a call to any supported API that
requires exiting the WebAssembly sandbox. These APIs include the system call API, the MPI API, and
the OpenMP API, but can also be extended with arbitrary APIs.

• Vertical Scaling. Our C-Cell runtime uses control-points to interrupt OpenMP calls that fork to multi-
threaded execution to elastically decide how many threads to use, based on input from the control-plane.

• Horizontal Migration. Our C-Cell runtime uses control-points to interrupt MPI calls that send messages
to each other in order to, when no more messages are in-flight, migrate MPI processes across VMs.

7.2.4 Interfaces and Integration

• Smart Orchestration. Our C-Cell runtime relies on input from the control-plane to decide when to
vertically scale and when to horizontally migrate. By leveraging these two new mechanisms, we can
also inform new scheduling and orchestration policies for the learning-plane.

• Ephemeral Storage. Whenever C-Cells need to access ephemeral storage, they can do so using GEDS
and, in particular, GEDS-Wasm extension, which can be directly linked to application code.

• Confidential Execution. For C-Cells that need to process private data, we support transparently running
C-Cells inside SGX enclaves using a lift-and-shift approach as provided by SCONE.

7.3 GEDS

The Generic Ephemeral Data Store (GEDS) is a core CloudSkin component designed to efficiently manage
temporary data produced, exchanged, and consumed by complex, multi-stage workflows deployed across the
cloud–edge continuum. GEDS places particular emphasis on supporting serverless execution environments,
where the number of compute elements may vary significantly over time and data locality plays a critical role
in overall performance.

7.3.1 Overview

GEDS implements a high-performance, multi-tier ephemeral storage abstraction that supports fast data access,
transparent data movement, and near-data computation using WebAssembly, as described in §7.7. By tightly
integrating storage management with application execution, GEDS enables workloads to operate efficiently
under highly dynamic resource conditions, making it particularly well suited for serverless, streaming, and
data-intensive applications.

7.3.2 Architecture

GEDS follows a multi-tier architecture centered around a tightly integrated Tier 0 buffer management layer.
Tier 0 interfaces directly with local resources through a filesystem abstraction, allowing seamless integration of
DRAM and fast local storage such as NVMe devices. All local GEDS objects are represented as files, enabling
memory-mapped access for low-latency data operations and implicit acceleration through the OS page cache.

Beyond Tier 0, GEDS supports a Persistency Tier that provides node-independent, disaggregated storage
and object persistence. This tier is integrated through an S3-compatible API and can be backed up by object
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storage systems such as IBM COS or AWS S3. GEDS supports both application-initiated and automatic object
spilling from Tier 0 to the Persistency Tier, triggered when configurable local resource limits are reached. At
present, object relocation is governed by an LRU policy.

With the exception of a lightweight Metadata Server, GEDS is implemented as an application-loadable
library rather than a standalone storage service. This design minimizes deployment overhead and permits
GEDS to be natively integrated into existing applications, with bindings currently available for C++, Python,
and Java. Fig. 8 exemplifies a deployment of GEDS in a Kubernetes environment running a Python workload
with the corresponding code in Listing 6.

Figure 8: GEDS example deployment in Kubernetes.

1 import os
2 import sys
3 import time
4 import io
5 import numpy as np
6 from threading import Thread
7

8 from smart_open import open
9 import geds_smart_open

10 from geds_smart_open import GEDS
11

12 bucket = ’geds -test’
13

14 AWS_SECRET_ACCESS_KEY = os.getenv(’AWS_SECRET_ACCESS_KEY ’)
15 AWS_ACCESS_KEY_ID = os.getenv(’AWS_ACCESS_KEY_ID ’)
16 AWS_ENDPOINT_URL = os.getenv(’AWS_ENDPOINT_URL ’)
17

18 geds_smart_open.register_object_store(
19 bucket ,
20 AWS_ENDPOINT_URL ,
21 AWS_ACCESS_KEY_ID ,
22 AWS_SECRET_ACCESS_KEY
23 )
24

25 output_csv = open(’file :// ai_training.csv’, ’w’)
26 output_csv.write("Threads ,Time ,Data Read ,Data Written ,Data Spilled\n")
27

28 def read_file(tid , buffers):
29 path = f’geds ://{ bucket }/ ml_model_{tid}.bin’
30 with open(path , ’rb’) as f:
31 buffers[tid] = f.read()
32
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33 def write_checkpoints(tid , buffers):
34 path = f’geds ://{ bucket }/ checkpoint/checkpoint_{tid}.bin’
35 with open(path , ’wb’) as f:
36 f.write(buffers[tid])
37

38 def persist ():
39 geds_smart_open.relocate ()
40

41 def benchmark_threads(num_threads , csv):
42 buffers = [None] * num_threads
43

44 # Read checkpoints
45 start_time = time.time_ns ()
46 threads = [
47 Thread(target=read_file , args=(i, buffers))
48 for i in range(num_threads)
49 ]
50 [t.start() for t in threads]
51 [t.join() for t in threads]
52

53 duration = (time.time_ns () - start_time) / (1000**3)
54 length = sum(len(b) for b in buffers)
55 csv.write(f’{num_threads },{duration},{length },0,0\n’)
56

57 # Write checkpoints
58 start_time = time.time_ns ()
59 threads = [
60 Thread(target=write_checkpoints , args=(i, buffers))
61 for i in range(num_threads)
62 ]
63 [t.start() for t in threads]
64 [t.join() for t in threads]
65

66 duration = (time.time_ns () - start_time) / (1000**3)
67 csv.write(f’{num_threads },{duration },0,{length },0\n’)
68

69 buffers = None
70

71 # Persist data
72 start_time = time.time_ns ()
73 persist ()
74 duration = (time.time_ns () - start_time) / (1000**3)
75 csv.write(f’{num_threads },{duration },0,0,{length }\n’)
76

77 for t in [1, 2, 4, 6]:
78 benchmark_threads(t, output_csv)
79 output_csv.flush ()
80

81 output_csv.close ()

Listing 6: Multi-threaded GEDS I/O benchmark used for AI training workload characterization.

7.3.3 Key Features

• High-performance ephemeral data management: GEDS has been specifically optimized for short-lived,
intermediate data generated by multi-stage and data-intensive workloads. By prioritizing low-latency
and high-throughput access over strict durability guarantees, GEDS reduces I/O overhead compared to
traditional persistent object stores, enabling efficient exchange of intermediate results across cloud–edge
resources.

• Multi-tiered storage architecture for performance and resilience: GEDS transparently manages ephemeral
data across a hierarchical storage stack comprising DRAM (Tier 0), local or disaggregated block storage
such as NVMe (Tier 1), and S3-compatible object storage (Tier 2). This tiered design allows hot data to
remain in high-performance memory while automatically spilling colder data to lower tiers based on
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the LRU policy, ensuring elastic operation under memory pressure without requiring application-level
changes.

• Near-data computation via GEDS-based WebAssembly Units: To support data transformation pipelines,
GEDS integrates a novel WebAssembly runtime that extends standard WASI with native, GEDS-aware
I/O primitives. These GEDS-based WebAssembly Units enable lightweight, isolated execution of data
preprocessing and transformation tasks directly close to the storage tiers, minimizing data movement
and improving end-to-end pipeline efficiency across the cloud–edge continuum.

7.3.4 Interfaces and Integration

• Unified storage substrate for CloudSkin runtime components: GEDS acts as the ephemeral backbone
for multiple CloudSkin platform components, including C-Cells, Nexus, and Pravega. By providing a
shared namespace, GEDS enables efficient data exchange between distributed batch stages, serverless
and edge-based workloads.

• Seamless interoperability with distributed and near-data runtimes: GEDS inter-operates with both
the C-Cells distributed runtime and the GEDS-based WebAssembly runtime. While C-Cells focuses on
compute-intensive, MPI/OpenMP-style parallelism, GEDS-based WebAssembly Units target fine-grained,
I/O-bound transformations executed close to data. Both Wasm runtimes can share the same Wasm code,
allowing portable binaries to be executed either as part of distributed workflows or as standalone near-
storage tasks, enabling flexible and transparent cloud–edge integration.

7.4 NearbyOne

7.4.1 Overview

NearbyOne is a powerful, cloud-native orchestration and automation platform designed to streamline and sim-
plify the management of complex cloud, edge, and private network infrastructures. By providing a unified
operational layer, NearbyOne enables businesses and service providers to automate deployments, manage
infrastructure, and orchestrate services efficiently across multi-cloud, edge computing, and telecom environ-
ments.

The NearbyOne orchestrator is responsible for the service onboarding and life-cycle management of cloud-
native applications and infrastructure at a global scale, and across the continuum. NearbyOne enables dynamic
automation, ensuring that services are instantiated, monitored, and optimized across diverse infrastructure
components.

7.4.2 Architecture

NearbyOne architecture, depicted in Figure 9, presents a unified control and management plane, i.e., the core
orchestration platform while allows to span multiple sites (public cloud, private cloud, and edge resources).
In CloudSkin, each site is based on Kubernetes, which serves as the common abstraction layer for managing
containerized workloads.

This multi-cluster setup allows CloudSkin to seamlessly deploy and operate services (e.g., the mobility
use case) across cloud and edge, while abstracting infrastructure heterogeneity from application developers.
The NearbyOne controller itself is a cloud-native platform that can be deployed on Kubernetes. As a result, it
operates using containerized services, each with specific resource requirements in terms of CPU, memory, and
storage.

The NearbyOne solution used in CloudSkin is composed of four main building blocks (see Figure 9):

• Management dashboard and Orchestration Engine: This is the central component responsible for end-
to-end orchestration of applications and infrastructure. It automates provisioning, deployment, scaling,
migration, and configuration management using declarative specifications (YAML), without requiring
any modification to application code.

• Nearby Blocks: Nearby Blocks are reusable, higher-level components that encapsulate application logic
together with orchestration metadata and management capabilities. Each block references Helm charts
and container images, enabling standardized deployment and lifecycle management of both core ser-
vices (e.g., observability) and mobility use case applications.

• Northbound Interface (NBI) Orchestration API: A RESTful API that exposes orchestration capabilities
to external entities, notably the Learning Plane, enabling AI-driven automation such as service migration
and optimization decisions.
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Figure 9: NearbyOne architecture overview.

• Observability Stack: Built on cloud-native open-source technologies, the observability stack enables
efficient collection, aggregation, storage, and visualization of telemetry data from all managed clusters.

As shown in Figure 9, the NearbyOne orchestration platform provides a single pane of glass through the
NearbyOne Management Dashboard. This GUI enables users to: define service deployment chains, specify
placement, configuration, and policy constraints, monitor system state, and deploy applications with minimal
effort. At the core of the platform lies the Orchestration Engine, which follows self-healing reconciliation loops
and enforces eventual consistency rather than transactional execution. This design allows the platform to
manage complex, distributed operations and dynamically adapt to infrastructure or service changes. A built-
in Marketplace further simplifies operations by offering one-click deployment of pre-packaged solutions. For
CloudSkin, the marketplace includes: observability stack blocks, the mobility use case DL Streamer video
analytics application, a dynamic DNS service and example applications such as NGINX and TorchServe.

Nearby blocks are the high-level, versioned entities that package and compose orchestration resources
for deployment, reuse, and lifecycle management of services. NearbyOne is not limited to Kubernetes-native
constructs or node management. Instead, it provides a unified, declarative resource model that extends well
beyond Kubernetes, enabling consistent management of clusters, edge nodes, workloads, and infrastructure
at scale. Listing 7 shows a component of the DL Streamer Pipeline Server Nearby Block from the mobility use
case. A Nearby Block specifies the entire desired state of the DL Streamer component, from image version
and placement configuration to ingress and DNS configuration, without modifying any of the application’s
internal code.

• kind:ChartDeployment, NearbyOne’s custom object representing a reusable DL Streamer workload de-
ployment.

• connectionListSelectors, a workflow coordination primitive, in this case used to automatically dis-
cover the Prometheus server where the DL Streamer will report metrics.

• k8sClusterSelector, used to determine the placement of the Helm chart to be deployed. This selection
can be driven by labels or by Key Performance Indicators (KPIs).

• values, overrides DL Streamer Helm defaults (such as enabling Ingress, or setting hostnames).
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Listing 7: A representative Nearby Block snippet of the DL Stramer Pipeline Server (mobility use
case)

1 # Copyright 2025 Nearby Computing S.L.
2 apiVersion: blocks/v1beta1
3 kind: ChartDeployment
4 metadata:
5 name: dlstreamer -deployment
6 namespace: {{ .Values.Block.InstanceId }}
7 spec:
8 connectionListSelectors:
9 promRelease:

10 matchLabels:
11 application: releases -monitoring -prometheus
12 site.nbycomp.com/{{ .Values.placement.site.label }}: "true"
13 required: 1
14 limit: 1
15 template:
16 metadata:
17 labels:
18 application: dlstreamer -{{ .Values.Block.InstanceId }}
19 app: dlstreamer -cloudskin
20 id: dns -{{ .Values.Block.InstanceId }}
21 spec:
22 k8sClusterSelector:
23 matchLabels:
24 site.nbycomp.com/{{ .Values.placement.site.label }}: "true"
25 chart: dlstreamer -pipeline -server
26 version: "0.3.0"
27 repo:
28 url: dlstreamer.cloudskin.repo
29 username: cloudskin -user
30 password:
31 secretKeyRef:
32 name: cloudskin.name
33 key: cloudskin.key
34 values: |
35 imagePullSecrets:
36 - name: cloudskin -image -pull -secret -name
37 pipelineServerName: &pipeline -server -name "dlstreamer -pipeline -server"
38 pipelineServerStatusURL: &pipeline -server -status -url "http :// dlstreamer -

pipeline -server :8080/ pipelines/status"
39 pipelineServerMqttName: &pipeline -server -mqtt -name "dlstreamer -pipeline -

server -mosquitto"
40 fullnameOverride: *pipeline -server -name
41 prometheus -json -exporter:
42 enabled: true
43 ...
44 mqtt -exporter:
45 enabled: true
46 ...
47 ingress:
48 enabled: true
49 ...

The NearbyOne NBI Orchestration API, enables programmatic interaction with the orchestrator. It allows
the Learning Plane to trigger automated actions—such as service migration between cloud and edge—based
on AI-driven insights, closing the loop between monitoring, learning, and orchestration.

The NearbyOne observability stack is deployed on top of NearbyOne as a service. Therefore, this is subject
to be adapted to the specific needs of each deployment. It is composed of standard observability components
commonly used across multiple domains to collect and aggregate telemetry. The observability stack is used
to collect, transport, and aggregate telemetry. The consolidated telemetry is available internally to the orches-
tration engine to influence policies and configurations, or externally to users for visualization purposes or the
Learning Plane for the AI-driven orchestration.
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• Prometheus is the main telemetry collection component, extensively used to collect telemetry from mul-
tiple services at a cluster level.

• Thanos is designed to aggregate and consolidate short-lived data stored in Prometheus cluster-stores, as
well as to expose a long-term Prometheus-compatible interface to the data.

• MinIO is a high performance, distributed object storage system that acts as the telemetry repository for
Thanos.

• Grafana for visualization and analytics.

All observability components are deployed and configured through NearbyOne Blocks, making monitor-
ing setup fully automated and consistent across clusters.

Moreover, NearbyOne relies on several external registries to support flexible and secure deployment work-
flows:

• Container Registries, for storing Docker images (public or private),

• Helm Chart Registries, for packaging and deploying complex Kubernetes applications, and

• Nearby Block Registries, for storing Nearby Blocks, which reference Helm charts and container images.

7.4.3 Key Features

• Unified multi-site orchestration, manages and automates application and infrastructure lifecycle across
public cloud, private cloud, and edge sites through a single control plane.

• Single-pane-of-glass management interface, a graphical interface and one-click deployment of services.

• Resource allocation and service lifecycle management, based on self-healing reconciliation loops and
policy-driven behavior to manage complex, distributed operations with eventual consistency.

• Multi-cluster observability stack, based on open-source components, enabling scalable monitoring across
the cloud-edge continuum.

• AI-driven automation via NBI: Exposes a northbound REST API that enables the Learning Plane to
trigger automated orchestration actions such as scaling and service migration.

7.4.4 Interfaces and Integration

NearbyOne integrates seamlessly with the CloudSkin reference architecture by providing the orchestration,
automation, and control backbone required to manage distributed cloud–edge infrastructures and services,
directly supporting FR11. Through its Northbound Interface (NBI) Orchestration API, NearbyOne exposes
programmatic control of orchestration workflows to external CloudSkin components, most notably the Learn-
ing Plane. This interface enables AI-driven decision-making loops, where insights derived from monitoring
data and analytics can trigger automated actions such as service (re)deployment, scaling, or migration be-
tween cloud and edge sites. The NBI abstracts the internal complexity of the orchestration platform, allowing
the Learning Plane to interact with NearbyOne through well-defined, technology-agnostic RESTful endpoints.

At the infrastructure level, NearbyOne interfaces with Kubernetes clusters via its southbound integration,
while at the service level it relies on declarative specifications (YAML, Helm charts, and Nearby Blocks) to
ensure consistent and reproducible deployments. This approach allows application developers and platform
services to integrate without modifying application code, fostering interoperability and rapid onboarding of
third-party components within the CloudSkin ecosystem.

7.5 Lithops

7.5.1 Overview

Lithops is a serverless, multi-cloud framework that enables the orchestration and execution of data analytics
workflows across heterogeneous cloud and edge environments. In addition to Function-as-a-Service (FaaS)
platforms, Lithops can also launch functions on containers and virtual machines, making it suitable for edge
deployments and hybrid infrastructures. It addresses intrinsic challenges of large-scale computation, including
the lack of direct communication between functions, absence of native synchronization between computational
stages, and general portability limitations due to proprietary APIs. Lithops lets developers port single-process
Python code to a fully distributed execution model, while abstracting the complexities of IaaS management.
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By orchestrating hundreds of concurrent function instances, Lithops delivers substantial performance
gains for workloads that require short-lived, highly parallel computations. This capability is critical for FR10,
as Lithops provides a unified API to manage heterogeneous serverless functions, containerized applications,
and distributed tasks across cloud-edge environments. Simply put, developers can deploy, run, and monitor10

parallel workflows through a consistent programming model.
Lithops has served as the foundation for the development of Lithops Serve, a distributed batch inference

engine that operates seamlessly across both cloud and edge environments. Building on Lithops serverless and
multi-cloud capabilities, Lithops Serve orchestrates multiple parallel function instances to execute AI inference
tasks at scale, enabling efficient, low-latency processing in heterogeneous deployment scenarios.

7.5.2 Architecture

Lithops follows a layered design that separates the concerns of local job management and remote serverless
execution. Its architecture can be divided into two main categories:

• Local components: These run on the client machine. The primary interfaces are the Futures API for job
submission and the Executor, which partitions jobs, uploads input data and dependencies to storage
back-ends, orchestrates the scheduling of remote workers, and collects results.

• Remote components: These execute user code in diverse environments, including FaaS platforms, on-
premises Kubernetes clusters, OpenWhisk, and virtual machines. The Invoker manages the deployment
of remote workers, which fetch user code and dependencies from object storage, execute the tasks, and
store results back. Each worker is Lithops-aware, enabling seamless, scalable, and transparent execution
of user-defined code across heterogeneous infrastructures.

The architecture abstracts away cloud-provider specifics, allowing Lithops to operate across AWS Lambda,
Google Cloud Run, and other FaaS platforms. It also provides storage-agnostic access through its Storage API,
which supports object storage and memory-based systems such as Redis. This multi-cloud and multi-backend
support ensures portability and mitigates vendor lock-in while preserving high-performance execution. Fig. 10
depicts the Lithops architecture.
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Figure 10: Lithops architecture overview.

7.5.3 Programming Model

Lithops exposes high-level APIs that simplify parallel programming on cloud functions:

10https://lithops-cloud.github.io/docs/source/monitoring.html
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• Futures API: Enables developers to submit jobs as single-machine Python functions. The map() function
executes a given function over multiple data partitions concurrently, while map_reduce() extends this
capability by collecting intermediate results and applying a reduction step. This interface allows users
to write code that resembles sequential execution while Lithops handles distributed orchestration.

• Storage API: Abstracts access to cloud storage and in-memory storage, enabling functions to read and
write data without concern for backend differences. This ensures that workflows can seamlessly interact
with heterogeneous storage backends, including S3, MinIO, GEDS, or Redis, while remaining portable
across cloud providers.

Lithops automatically handles task partitioning, function invocation, dependency distribution, and result
aggregation. Synchronization between workflow stages, including nested function compositions, is implicit,
reducing the programming burden and avoiding errors associated with distributed systems. In what follows,
you can find a snippet of code for counting words in parallel:

Listing 8: Distributed word count using Lithops map-reduce
1 """
2 Simple Lithops example using map() to count word occurrences in text chunks
3 """
4 import lithops
5 from collections import Counter
6

7 # Function to count words in a single chunk
8 def count_words(text_chunk):
9 words = text_chunk.split()

10 return Counter(words)
11

12 if __name__ == ’__main__ ’:
13 # Example: split text into chunks
14 texts = [
15 "lithops is a serverless framework for parallel computing",
16 "it can run code on cloud functions , containers , or vms",
17 "map and reduce primitives enable large scale data analytics",
18 "users can process many text chunks concurrently"
19 ]
20

21 # Create a Lithops executor
22 fexec = lithops.FunctionExecutor ()
23

24 # Map phase: run word count on each chunk
25 fexec.map(count_words , texts)
26

27 # Collect results
28 results = fexec.get_result ()
29

30 # Reduce phase: combine word counts
31 total_count = Counter ()
32 for r in results:
33 total_count.update(r)
34

35 print("Aggregated word counts:", dict(total_count))

7.5.4 Key Features

• Transparent orchestration of hundreds to thousands of concurrent serverless functions.

• Unified interface for serverless, containerized, and edge workloads.

• Abstracted storage API ensuring multi-cloud portability and seamless interaction with object or memory-
based storage systems.

• MapReduce-style and Futures API for simplified parallel programming.
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• Automatic dependency management and implicit synchronization between computation stages.

• High elasticity: functions can scale from zero to thousands of concurrent executions in seconds.

• Integrated fault tolerance and retry mechanisms to ensure reliable execution.

7.5.5 Integration with the Reference Architecture

Lithops integrates seamlessly with other CloudSkin components to support FR10 by providing a high-level
execution layer for distributed batch inference workloads, particularly in the Metabolomics use case in the
project. It leverages object storage as an intermediate exchange data layer, allowing it to interface with virtually
any component in the platform. Consequently, Lithops can consume data from GEDS and Pravega, tiered to
S3 or other S3-compatible object stores such as MinIO. Further, it can interact directly with GEDS and Pravega
via their native Python APIs.

This architecture enables fully distributed and parallelizable data pipelines across cloud and edge settings.
Its API abstractions also allow Lithops to coordinate execution with orchestrators or Learning Plane agents,
responding dynamically to telemetry data or policy-driven triggers.

7.6 SCONE

7.6.1 Overview

SCONE is a confidential computing platform that provides a lift-and-shift approach for native applications to
leverage TEEs (Trusted Execution Environments) without many modifications to enable secure execution of
sensitive applications. In a nutshell, SCONE has been applied in several key contexts throughout the project:

• In the context of C-Cells, SCONE is able to provide a further level of sandboxing by running it inside an
Intel SGX enclave, complementing the existing WebAssembly sandbox for memory safety. By running a
C-Cell inside an enclave, not only is hardware-level isolation guaranteed, but also memory integrity
from powerful potential outsider attacks.

• SCONE also brings confidential computing to Lithops workers and Pravega servers. As C-Cells, both
are core components of the reference implementation.

• SCONE is also employed to address computational confidentiality and integrity in CloudSkin use cases,
namely Metabolomics and CAS.

7.6.2 Architecture

In general, SCONE leverages the fact that an application requires a C library to function. SCONE implemented
a customized C library, replacing the one the application is compiled against. This substitution is transparent,
meaning that, in most cases, no changes are needed in the application. If the application is executed on top of
a specific sandbox such as Python or Faasm, then both the application and the sandbox are protected. Looking
at current research, many extensions to SCONE are available, such as protecting application integrity [11] or
preventing rollback attacks on storage [12].

When the application loads into memory, SCONE can distinguish this process and place the necessary
parts of the application into the TEE. Although system calls are still executed outside the TEE, SCONE provides
a shield to filter and secure system call execution. Additionally, SCONE provides advanced features such as a
file system and a network shield to protect the integrity and confidentiality of storage and network interaction,
respectively.

Interestingly, performance evaluations from several project partners show that the SCONE-powered vari-
ant can, in some scenarios, outperform native execution. This is largely attributed to SCONE asynchronous
system-call mechanism and its optimized thread-management model. When an enclave is instantiated, SCONE
allocates two types of threads: an internal enclave thread (ethread) and a system-call handling thread (sthread).
These correspond to the M:N threading and asynchronous system-call interface components depicted in Fig. 11.

7.6.3 Key Features

• Transparent secure execution of applications and functions with TEE support.

• Integration with C-Cells for confidential workloads.

• Provide confidential computing support to support serverless (Lithops) and streaming processing (Pravega).
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Figure 11: SCONE architecture [5].

7.6.4 Interfaces and Integration

SCONE enables transparent conversion of native applications to run inside a TEE, ensuring both integrity
and confidentiality of code and data within the secure memory region. This lift-and-shift capability has been
applied to the C-Cell runtime, allowing C-Cell workloads to execute inside an Intel SGX enclave and remain
protected from a powerful external adversary.

Beyond the application layer, SCONE has also been integrated into several components of the supporting
platform across the architecture. In collaboration with URV and DELL, we enabled confidential execution of
Lithops Serve workers and Pravega servers. In the Metabolomics use case, SCONE secures the execution of
Lithops Serve workloads, which includes PyTorch dependencies. The same applies to Pravega Controller and
Segment store, which are core parts of their architecture.

In the surgery use case, SCONE has been applied to the two frameworks in use in data pipeline: ROS
(Robot Operating System) and GStreamer11, a multimedia streaming framework. This guarantees that model
inference is run confidentially, safeguarding both data-in-use and the processing pipeline. We also conducted
a controlled, Python-only experiment focused exclusively on inference to assess performance overhead. These
results demonstrate that integrating SCONE into the computer-assisted surgery workflow is both feasible and
flexible, enabling protection at multiple layers of the application stack.

7.7 GEDS WebAssembly-based Units
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Figure 12: GEDS WebAssembly-based Units architecture.

11https://gstreamer.freedesktop.org/
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7.7.1 Overview

WebAssembly [1] is a bytecode format that promises high performance, portability, and lightweight isola-
tion. These properties are delivered thanks to a simplified memory management, a close-to-native bytecode
and a minimalist interface for the interaction with system resources (WASI, short for WebAssembly System In-
terface). While these properties help shape Wasm’s strengths, they also hinder legacy application extensibility
and I/O-heavy use cases. To overcome these limitations and provide Wasm modules with access to GEDS, we
propose GEDS WebAssembly-based Units.

GEDS WebAssembly-based Units (GEDS Wasm Units) are a custom Wasm execution environment that
empowers legacy Wasm applications transparently with GEDS’ storage tiering and fast data migration capa-
bilities for near-data and fast sandboxed computations. To do so, GEDS Wasm Units leverage a novel approach,
WASI hostcall interposition, to intercept standard I/O hostcalls from Wasm and redirect them transparently
to GEDS.

GEDS Wasm units are a deep integration that takes place between Wasm modules and the compute node:
in the Wasm runtime process. By working at the runtime level, this integration achieves better performance
than external approaches (e.g., FUSE filesystems), and overcomes Wasm’s extensibility limitations, allowing
existing applications to utilize GEDS without rewriting large portions of code.

GEDS Wasm Units not only cover the integration of GEDS with Wasm modules, but also provides signifi-
cant benefits to legacy Wasm applications. Firstly, they extend WASI’s minimalist I/O interface with advanced
storage capabilities. Secondly, they allow bypassing legacy Wasm modules’ 4 GB memory limit. Finally, they
allow for efficient communication of Wasm applications through shared memory and RDMA, two capabilities
that are not available in Wasm.

7.7.2 Architecture

GEDS Wasm units are implemented on top of Wasmtime [13], an industry-standard Wasm runtime written
in Rust. To allow the interaction of GEDS, implemented in C++, with Wasmtime, we provide a set of Rust
bindings for GEDS.

Figure 12 depicts the architecture of GEDS Wasm Units, which are made up of two main components:

• Runtime process. The runtime process is responsible for executing Wasm applications. For portabil-
ity reasons, Wasm-compiled applications do not contain any logic referring to system calls (hostcalls in
WASI). Instead, when executing a Wasm application in a runtime, the runtime provides this implemen-
tation in the form of a WASI context. By supplying a custom WASI context that replaces the implemen-
tation of specific hostcalls, we can extend Wasm transparently. We have named this mechanism WASI
hostcall interposition, and is also performed by the runtime process.

• GEDS WASI context. GEDS Wasm units implement a GEDS WASI context that modifies file I/O host-
calls (i.e., fd_write, fd_read, path_open, fd_close, etc.) to achieve the integration of GEDS with Wasm.
An example of this is found in Listing 9, which depicts our custom implementation of the fd_write host-
call, similar to the write syscall. The GEDS WASI context is not destructive; the original implementation
of the WASI hostcall can also be used if the interaction with the module’s local storage, instead of GEDS,
is required.

GEDS Wasm Units are the perfect match for computational storage: they combine the lightweight isolation
of WebAssembly with a tiered storage layer closely located to each other. Wasm modules gain access to GEDS’
fast in-memory Tier Zero storage layer, efficient communication between module instances through RDMA
and shared memory, and persistence of the data, an important feature in containerized environments where
local storage is often ephemeral. Wasm’s low startup latency allows for on-the-fly data transformations, the
results of which can be quickly cached and stored in GEDS.

Listing 9: A code snippet of the custom GEDS context which showcases the modified fd_write to
allow the interaction of the Wasm runtime with GEDS.

1 async fn fd_write(
2 &mut self,
3 mem: &mut GuestMemory<’_>,
4 fd: Fd,
5 iovs: CiovecArray,
6 ) −> Result<Size, Error> {
7 // Check if the file descriptor corresponds to a GEDS object
8 if self.geds_descriptors.contains_key(&u32::from(fd)) {
9 let geds_file = self.geds_descriptors.get(&u32::from(fd)).unwrap();
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10

11 // Initialize memory buffer
12 let buf = first_non_empty_ciovec(mem, iovs)?;
13 let buf = mem.to_vec(buf)?;
14

15 // Write to GEDS
16 return match geds_file.write(&buf, 0, buf.len()) {
17 Ok(()) => Ok(u32::try_from(buf.len())?),
18 Err(_) => {
19 Err(Errno::Fault.into())
20 }
21 };
22 }
23 // Fallback to original WASI context for non−GEDS files (i.e, local filesystem)
24 self.inner.fd_write(mem, fd, iovs).await
25 }

7.7.3 Key Features

• On-the-fly data transformations.

• Near-data execution and low-latency compute.

• Virtualization of memory for secure multi-tenant execution

7.7.4 Interfaces and Integration

In the framework of the project, GEDS Wasm Units bridge the gap between Wasm runtimes and GEDS, en-
abling existing, pre-compiled legacy Wasm applications to interact with GEDS transparently. With this, we
provide applications access to tiered storage (in-memory, local disk, persistent storage) in the form of a modi-
fied Wasm runtime. On the other hand, GEDS Wasm units represent a complementary compute layer abstrac-
tion that can coexist and cooperate with others, such as C-Cells and Lithops executors.

From a developer’s perspective, GEDS Wasm Units do not provide an interface per se. A Wasm application
running in an unmodified Wasm runtime (e.g., Wasmtime) that performs file I/O operations will interact with
local storage, while the same application running in a GEDS Wasm Unit will automatically interact with GEDS
without requiring any changes in the codebase.

7.8 Pravega

7.8.1 Overview

Pravega is an open-source, distributed storage system designed specifically for data streams. Unlike traditional
event streaming systems that primarily buffer events, Pravega introduces a tiered storage architecture that
combines a low-latency write-ahead log (WAL) with scalable long-term storage (LTS), enabling applications to
retain streaming data for extended periods in a cost-effective way. Streams in Pravega are durable, elastic, and
append-only sequences of bytes, internally divided into segments for parallelism. This architecture supports
high ingestion throughput, strong consistency guarantees (no duplicates or missing events, per-key ordering),
and efficient historical reads, making Pravega a robust substrate for modern streaming pipelines.

A distinguishing feature of Pravega is elastic streams, which automatically adjust their parallelism degree
based on workload fluctuations. This auto-scaling capability reduces operational complexity and ensures
balanced resource utilization across compute and storage layers. Pravega also integrates storage tiering into
the ingestion path, unlike systems that rely on best-effort offloading, guaranteeing predictable performance
and durability. Furthermore, Pravega supports multiple APIs on top of data streams beyond event streaming,
including byte-oriented streams, key-value tables, and state synchronization primitives. These APIs enable
heterogeneous workloads such as large file transfers, multimedia pipelines (e.g., GStreamer video analytics),
and distributed coordination, all within a unified streaming framework.

7.8.2 Architecture

The architecture of Pravega is shown in Fig. 13. First, Pravega offers client libraries implementing the server
APIs, such as writers and readers, which interact with Pravega server instances either within the same cluster
or externally. These client libraries allow stream processing engines to manage data events from Pravega.

On the server side, we find the Pravega control plane formed by controller instances. The control plane is
primarily responsible for orchestrating all stream lifecycle operations, like creating, updating, scaling, and
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Figure 13: Architecture of Pravega consisting of clients, controllers, and segment store instances.
Segment stores temporarily write data to WAL and then move the data to LTS. The figure also shows
an example of stream auto-scaling.

deleting streams. Pravega streams are policy-driven. Currently, the system offers two types of stream policies:
retention policies, which automatically truncate a stream based on size or time bounds; and auto-scaling policies,
which allow the system to automatically change the segment parallelism of a stream based on the ingestion
workload (events/bytes per second). The control plane takes care of enforcing such stream policies. For stream
auto-scaling policies, Pravega builds a feedback loop between the control and data planes, so the control plane
can react to the load monitored by the data plane.

The data plane in Pravega handles data requests from clients and is formed by segment store instances. Seg-
ment stores play a critical role in making segment data durable and serving it efficiently. Note that segment
stores only work with segments and are agnostic to the concept of stream, which is an abstraction of the control
plane. The data plane distributes the segment-related load based on segment containers. Segment containers
perform the heavy lifting on segments and the main role of segment store instances is to host segment con-
tainers. A segment is mapped during its entire life to a segment container using a stateless, uniform hash
function that is known by the control plane. Thus, segment ids belong to a key-space that is partitioned across
the available segment containers.

The segment store has two storage tiers: Write-Ahead Log (WAL) and Long-Term Storage (LTS). The main goal
of WAL (implemented via Apache Bookkeeper [14, 15]) is to guarantee durability and low latency of incoming
writes and keep that data temporarily for recovery purposes. Segment stores asynchronously move data to
LTS. Once some data is stored in LTS, the corresponding log file from WAL is truncated. Pravega has an LTS
tier for a couple of key assumptions that determined its design: data streams are potentially unbounded and
the system should be able to store a large number of segments in a cost-effective manner. Pravega achieves both
goals by storing historical stream data in a scalable storage service.

Finally, Pravega uses a consensus service (Apache Zookeeper [16, 17]) for leader election and general clus-
ter management purposes.

7.8.3 Key Features

• Unified real-time streaming and batch analytics support.

• Elastic streaming storage fabric adapting to workload changes.

• Low-latency edge-cloud data access.

Listing 10: GStreamer pipeline for phase detection NCT AI model
1 """
2 GStreamer pipeline to read video from a Pravega stream and perform inference via

the "phase detection" NCT AI model
3 """
4 gst -launch -1.0 \
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5 -v \
6 pravegasrc \
7 allow -create -scope=${ALLOW_CREATE_SCOPE} \
8 buffer -size =1024 \
9 controller=${PRAVEGA_CONTROLLER_URI} \

10 keycloak -file=\"${KEYCLOAK_SERVICE_ACCOUNT_FILE }\" \
11 stream=${PRAVEGA_SCOPE }/${PRAVEGA_STREAM_1} \
12 $* \
13 ! decodebin \
14 ! videoconvert \
15 ! NN_phase_plugin \
16 ! videoconvert \
17 ! x264enc tune=zerolatency key -int -max=30 speed -preset=medium \
18 ! h264parse \
19 ! video/x-h264 ,alignment=au \
20 ! mpegtsmux \
21 ! pravegasink \
22 stream=${PRAVEGA_SCOPE }/${PRAVEGA_STREAM_2} \
23 allow -create -scope=${ALLOW_CREATE_SCOPE} \
24 controller=${PRAVEGA_CONTROLLER_URI} \
25 keycloak -file =\"${KEYCLOAK_SERVICE_ACCOUNT_FILE }\" \
26 seal=false sync=false timestamp -mode=realtime -clock

7.8.4 Interfaces and Integration

In CloudSkin, Pravega is positioned as a storage substrate for streaming analytics and event-driven applica-
tions across the cloud–edge continuum.

Technology wise, we have demonstrated integrations of Pravega with various CloudSkin components.
First, we integrated Pravega and GEDS to mitigate the impact of long-term storage outages in streaming in-
gestion process of Pravega (see D3.3). Second, we have “sconified” Pravega clients and evaluated the perfor-
mance impact of running streaming clients on TEEs for latency-sensitive applications (see D4.3). Moreover, we
demonstrate how we can auto-scale Pravega instances with predictive methods in D5.4, which paves the way
for integration with the CloudSkin Learning Plane. Finally, in D3.4, we present Nexus, a novel data manage-
ment system for tiered data streams, and how it can add value via data management functions to the storage
tiering process of Pravega across the cloud-edge contiuum.

For use cases, Pravega is the key streaming storage foundation supporting the Computer-Assisted Surgery
(CAS) use case. We have built a streaming platform PoC for ingesting and surgical video data at scale (see
D2.3). Pravega guarantees sub-10ms video frame IO latency and automatic management of historical surgical
video data. Moreover, we augmented this streaming platform with predictive auto-scaling models that handle
the fluctuating demands of NCT surgery room usage patterns while minimizing impact to NCT’s real-time AI
inference jobs (see D5.2).

In practice, NCT data scientists use Pravega streams in their pipelines as shown in Listings 10. In this
GStreamer pipeline, we can see how the input video is read from PRAVEGA_SCOPE/PRAVEGA_STREAM_1. This
input stream may be receiving real-time video from an endoscopic camera, or already contain historical video
data. In any case, the pipeline defines that the video is processed by the NN_phase_plugin, which executes in-
ference on video frames using the NCT “phase detection” model via Pytorch. Finally, the pipeline defines that
the output of the AI model is stored on another Pravega stream named PRAVEGA_SCOPE/PRAVEGA_STREAM_1.
In addition to providing a simple programming model for NCT data scientists to perform AI video inference
on real time and in batch, these pipelines have been containerized. This fosters code re-use and facilitates
deployment of NCT AI models across Cloud-edge environments.

7.9 Nexus

7.9.1 Overview

Nexus is a data management mesh designed to bridge the gap between event streaming systems and external
storage services during tiered storage operations. Modern streaming platforms such as Apache Kafka, Pulsar,
and Pravega support tiered storage to offload cold data chunks to cost-efficient object stores. However, these
mechanisms typically perform simple data transfers without enabling advanced data management. Nexus
introduces a programmable layer that transparently intercepts storage operations and applies user-defined
functions—called streamlets—on chunks of tiered stream data across the cloud-edge continuum.
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Figure 14: Architecture overview and operation of Nexus.

The core idea behind Nexus is to decouple data management from the streaming hot path while main-
taining transparency and extensibility. Streamlets can perform diverse tasks such as compression, encryption,
caching, semantic annotation, and privacy-aware routing. These functions are orchestrated through policies
and executed across heterogeneous infrastructures (edge and cloud) using clusters of worker nodes called
swarmlets. This design allows administrators to build rich, location-aware data management pipelines without
modifying the underlying streaming system.

7.9.2 Architecture

The architecture of Nexus is organized around three key abstractions: streamlets, swarmlets, and policies (see
Fig. 14). A streamlet is a reactive function executed inline on intercepted storage requests for tiered stream
data chunks. Streamlets are categorized into four types: (i) transformers for content modification (e.g., compres-
sion, encryption), (ii) performance-oriented for caching and prefetching, (iii) routing for multi-cloud replication
or privacy-aware placement, and (iv) semantic for AI-based content analysis. Streamlets can be stateless or
stateful, with Nexus providing primitives for persistent state management via metadata services.

Swarmlets represent clusters of homogeneous worker instances deployed across edge or cloud environ-
ments. Each swarmlet exposes a standard API endpoint (e.g., S3-compatible) to intercept storage operations
transparently. Worker instances execute streamlets in containerized environments, supporting isolation and
dynamic loading of binaries. Policies define the orchestration logic for streamlet pipelines, specifying execu-
tion order, location constraints, and hardware requirements (e.g., GPU for AI inference). Policies also determine
the final storage destination after processing.

Nexus employs a mesh-like routing mechanism to enforce policy constraints and optimize execution.
Partition-aware routing ensures deterministic assignment of stream partitions to worker nodes, enabling effi-
cient stateful streamlet execution without global synchronization. Additionally, Nexus supports location- and
hardware-based routing to satisfy policy requirements across heterogeneous infrastructures. Fault tolerance is
achieved by acknowledging storage requests only after successful pipeline execution, preserving end-to-end
data integrity. Overall, this architecture enables Nexus to deliver programmable, in-transit data management
for tiered streams while maintaining transparency and scalability.

7.9.3 Key Features

• Dynamic buffering for network variability

• Semantic annotation of storage chunks

• On-the-fly transformations (compression, encryption)

• Intelligent routing based on policies

7.9.4 Interfaces and Integration

In CloudSkin, Nexus stands as data management mesh to allow executing advanced functions over chunks of
tiered stream data across the cloud–edge continuum. In this sense, while Nexus primary use case is Pravega,
it can benefit any streaming system (e.g., Kafka, Pulsar, RedPanda) that implements S3 bindings for offloading
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Table 14: Summary of Nexus Streamlet APIs (developer-facing).

API Purpose (examples) Key methods
ByteStreamlet Raw-byte processing at tiering boundary.

Examples: compression (GZip),
encryption, format conversion.

processPutBytes,
processGetBytes

DataSourceStreamlet Intercept/serve the data source on GET.
Examples: buffering under outages,
prefetching, cache redirect.

handlePreGet

EventStreamlet<T> Record-level processing after
deserialization. Examples: AI-driven
annotation, content filtering, semantic
indexing.

processPutRecord,
processGetRecord

Deserializer<T> Convert chunk bytes into typed records.
Examples: JPEG frames, FASTQ reads.

deserializeChunk

@Persistent Annotate state to persist across executions.
Examples: per-partition indexes, routing
maps.

(annotation on data
structures)

stream data to external storage (see D3.4). In this sense, we demonstrate the value that Nexus can add in
terms of data management across the cloud-edge continuum via the Computer-Assisted Surgery (CAS) use
case (see D5.4). In particular, we implemented a “storage buffering streamlet” to provide long-term storage
disconnection resilience in Pravega, achieving results comparable to those previously obtained with GEDS.
Additionally, we developed a “surgical annotation” streamlet that leverages NCT AI models to annotate data
objects based on the content of surgical images.

Listing 11: Compression streamlet implementation example
1 """
2 Streamlet implementation performing compression in processPutBytes method
3 """
4 @Override
5 protected void processPutBytes(StreamletIO dataStreams , StreamletContext context)

{
6 try (InputStream input = dataStreams.input ();
7 OutputStream output = new GZIPOutputStream(dataStreams.output ())) {
8 byte[] buffer = new byte [8192];
9 int bytesRead;

10 while (( bytesRead = input.read(buffer)) != -1) {
11 output.write(buffer , 0, bytesRead);
12 }
13 } catch (IOException e) {
14 throw new RuntimeException("Error compressing data", e);
15 }
16 }

From a developer viewpoint, Nexus API is shown in Table 14. This API allows developers to create
streamlets that work on raw streams of bytes (ByteStreamlet) or on the actual event contents by deserializing
(Deserializer) them via the EventStreamlet. A simple code example of a Nexus streamlet that performs
data compression can be seen in Listings 11. Visibly, this streamlet implements processPutBytes defined in
the ByteStreamlet and uses the GZIPOutputStream library to write compressed data to the OutputStream. As
a result, chunks of stream data intercepted by Nexus will be compressed and stored transparently in external
storage.
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8 Conclusions
The reference architecture presented provides a practical overview of the implemented CloudSkin platform,
detailing the key components, their roles, and interactions across the cloud-edge continuum. It demonstrates
how the integrated system meets all functional requirements, including secure execution, elastic and portable
compute, multi-site orchestration, and advanced data management capabilities. By documenting component
architectures, interfaces, and integration patterns, this reference architecture validates the design decisions
made during implementation and serves as a blueprint for understanding, maintaining, and extending the
platform. It also highlights the alignment between functional requirements, software layers, and real-world
use cases, confirming that the platform operates as intended across diverse cloud and edge environments.
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