
HORIZON EUROPE FRAMEWORK PROGRAMME

CloudSkin
(grant agreement No 101092646)

Adaptive virtualization for AI-enabled Cloud-edge
Continuum

D3.1 Early release of Ephemeral Data Store

Due date of deliverable: 30-06-2023
Actual submission date: 30-06-2023

Start date of project: 01-01-2023 Duration: 36 months

Summary of the document

Document Type Other

Dissemination level Public

State v1.0

Number of pages 12

WP/Task related to this document WP3 / T3.1

WP/Task responsible IBM

Leader Bernard Metzler (IBM)

Technical Manager Raúl Gracia (DELL)

Quality Manager Marc Sanchez-Artigas (URV)

Author(s) Bernard Metzler + Pascal Spörri (IBM)

Partner(s) Contributing IBM, DELL, URV

Document ID CloudSkin_D3.1_Public.pdf

Abstract Early software release of the data store, focusing on defini-
tion of API’s, data store architecture and application inte-
gration of the performance tier.

Keywords Key-value store, ephemeral data, persistency, elasticity

History of changes

Version Date Author Summary of changes

0.1 27-04-2023 Bernard Metzler,
Pascal Spörri

First draft.

0.2 11-05-2023 Pascal Spörri Fixes, added Python integration.

0.3 21-06-2023 Raúl Gracia,
Bernard Metzler

Adressed Raúl’s comments.

0.4 22-06-2023 Bernard Metzler Added section onsupporting ephemeral tasks.

1.0 30-06-2023 Bernard Metzler,
Pascal Spörri

Final version.

HORIZON - 101092646 CloudSkin
30/06/2023 RIA

Table of Contents

1 Executive summary 2

2 Data store requirements for CloudSkin 3

3 GEDS Design 3
3.1 Overall Design – High-Level View . 3

3.1.1 Components . 3
3.1.2 Data object handling . 4

3.2 Efficient application integration . 4
3.2.1 Zero-copy data object access . 5
3.2.2 Python Integration . 5
3.2.3 Java Integration . 5

3.3 Multi-tiering and object persistency . 5
3.4 Elasticity . 6
3.5 Data object location awareness, steering and relocation 6

3.5.1 Supporting ephemeral tasks in a Cloud-edge scenario 7
3.6 Additional services . 7

4 Status of the GEDS prototype 7
4.1 Overall functionality . 9
4.2 IO Benchmark . 10
4.3 Spark shuffle for single TPC-DS Queries . 10

5 Conclusions and next steps 10

i

HORIZON - 101092646 CloudSkin
30/06/2023 RIA

List of Abbreviations and Acronyms

API Application Programming Interface

CC Creative Commons

CSV Comma-separated values

CUDA Compute Unified Device Architecture

DOI Digital Object Identifier

GEDS Generic Ephemeral Data Store

IO Input/Output

JNI Java Native Interface

KV Key/Value

MDS Metadata Service

NVMe NonVolatile Memory express

RDMA Remote Direct Memory Access

RPC Remote Procedure Call

TCP Transmission Control Protocol

Page 1 of 12

HORIZON - 101092646 CloudSkin
30/06/2023 RIA

1 Executive summary

In distributed systems, the efficient handling of temporary data between tasks of a complex, poten-
tially multi-staged workload is critical to the end-to-end execution performance. The heterogeneity
of access patterns, object sizes, lifetimes, locations and persistency requirements of those ephemeral
data across the diversity of applications often lead to the implementation of application specific, in-
tegrated handling of those data. In those cases, integrating with off-the-shelf storage platforms, such
as established key-value stores or distributed file systems would simply miss the desired overall ap-
plication execution performance targets. Here, maintaining overall performance is preferred over
generality of the solution.

With the Generic Ephemeral Data Store (GEDS) we try to tackle this storage solution pande-
monium. We are starting out with lessons learned during the design of another high-performance
ephemeral data store, Crail [1], which exemplifies a design for high performance, distributed object
access and flexible storage multi-tiering. While starting out with a complete new data store design,
we add to it two goals, which were not fulfilled by Crail, namely deep integration of application
buffers into the storage hierarchy and the support of task synchronisation primitives. The first such
primitive which will be supported by GEDS is a pub/sub service. It will allow clients to register for
events signaling data objects to become available or changed.

We aim at using GEDS as a generic ephemeral data store within the CloudSkin project, with a
focus on the specific requirements of a data store for serverless workload execution environments in
a Cloud core-edge continuum.

As of the time of this first milestone writeup, after starting from scratch, we now maintain a sta-
ble prototype of the GEDS data store with limited functionality, which is openly available at [2]. It
comprises a base implementation of the high performance lowest storage tier, which directly inte-
grates with the application task as a dynamically loadable library. It further implements access to a
persistence tier via AWS S3 interface. The core of GEDS is written in C++. It exports native language
bindings for Java via JNI and for Python via PyBind11 [3].

To enable integration into existing projects, we created plugins for common libraries. For Java-
based workloads we built a file-system plugin for Apache HDFS [4]. For Python-based workloads
we integrated with smart_open [5]. Both libraries are used to access files on both local and remote
filesystems.

Page 2 of 12

HORIZON - 101092646 CloudSkin
30/06/2023 RIA

2 Data store requirements for CloudSkin

This section summarizes the requirements on the ephemeral data store as to be deployed in the
envisioned Cloud-edge continuum. The specific design of GEDS is derived from those requirements.

• Performance: In distributed systems, the efficient handling of ephemeral data is critical for
the overall performance of workload execution. While resource virtualization is inevitable as
a concept, maintaining close to bare metal infrastructure performance at the storage level is
needed to enable the flexible and fine granular decomposition of complex application work-
flows into sets of parallel and short-lived tasks, so that the CloudSkin platform can efficiently
run its intended use cases in a Cloud-edge continuum.

• Elasticity: In a dynamic edge-core continuum, data store elasticity enables spending only stor-
age resources which are currently needed to hold working set data. It distinguishes it from a
classic managed service (e.g. a key value store), which, for example, cannot scale down to zero.
Elasticity is crucial for overall resource efficiency.

• Multi-tiering: While ephemeral data are typically stored in DRAM memory, extended data
tiering can be beneficial. (1) It allows to dynamically exceed local storage resource bounds,
accidentally or intended (relocating less frequently used objects for very thin compute nodes),
(2) it enables the integration of an object store for reading input data and writing final output
data seamlessly within a common namespace, and (3) a ’higher’ storage tier can be used for
checkpointing and recovery of working set data in case of failure.

• Object location awareness: This feature, at one hand, goes along with the performance re-
quirement that maintaining data as close as possible with the current task avoids network data
transfers, as well as local data copy operation during read and write access. Furthermore,
combined with task scheduling it can enable the coordination of data output placement and
compute task scheduling, aiming at data and compute colocation at the same node.

• Additional services: The GEDS data store will support a unified object namespace for all tasks
and stages of a distributed workload. We plan to extend the services of this ephemeral names-
pace from just maintaining access to data objects with the support of simple communication
primitives, involving maintained data objects. As a first additional service, it is planned to
provide a pub/sub service, which allows data store clients to register with future data object
creation or changes to already existent objects. We expect this service to be useful for the syn-
chronisation of successive tasks within a workflow.

3 GEDS Design

This section introduces the overall desgin of the GEDS data store. At the time of this writing, the
main design decisions have been made. However, we reserve the right to make further changes and
additions to it.

3.1 Overall Design – High-Level View

3.1.1 Components

Figure 1 depicts the overall design of the Generic Ephemeral Data Store. The data store mainly
comprises the following components: Data storage tiers, clients and a Metadata Service.

We have defined three distinct storage tiers: Tier Zero implements a high performance storage tier,
where data objects reside in local node memory, potentially being memory mapped into application
buffers. Tier 1 represents a disaggregated storage tier designed to keep data objects in high perfor-
mance block storage, preferable NVMe disks. The Persistence Tier is the lowest storage tier, where
data can be persisted into and retrieved from an available KV-store.

Each GEDS instance runs a Metadata Service (MDS), which is synchronising object creation, access
and location. The current prototype maintains one MDS instance per GEDS. Scaling out to multiple

Page 3 of 12

HORIZON - 101092646 CloudSkin
30/06/2023 RIA

Figure 1: GEDS Overall Design

instances or to a managed service like Redis is possible, but at the current stage of the project not
needed.

Clients to the data store can join the GEDS service by loading a libgeds client shared library.
After loading, the client registers itself with the MDS and then may passively (reading data objects)
and actively (registering and writing data objets) participate in the GEDS service.

3.1.2 Data object handling

GEDS establishes a shared namespace for data objects. Data objects are uniquely named by an iden-
tifier or object key, following naming conventions very similar to those of the AWS S3 (Simple Storage
Service), see [6].

A new data object enters the GEDS namespace either after reading it in from the Persistence Tier,
or after registering a local application buffer as a GEDS object. With that, each data object starts its
lifetime within GEDS Tier Zero. As a design principle, any access to a data object will instantiate that
object at Tier Zero of the local node the client is running on. This may cause several local copies of
the same object if that object is accessed from clients on multiple nodes. Data copies are tracked by
the MDS.

Within Tier Zero, data transfer among nodes happens directly between application buffers. For
efficiency reasons, GEDS currently implements its own TCP based RPC communication library for
object transfers between nodes. It is considered extending it for RDMA based transfers, if high per-
formance network infrastructure is available (see Figure 1).

3.2 Efficient application integration

The GEDS client operations are consolidated within a shared library. Loading the library will connect
the client with the MDS and let it become part of the GEDS namespace, since implementing a local
share of Tier Zero. Only during remote object access, the library will automatically connect with the
peer currently hosting that data object. GEDS keeps track of any files opened by the application. If a
file is closed then GEDS is able to release its associated resources.

Page 4 of 12

HORIZON - 101092646 CloudSkin
30/06/2023 RIA

3.2.1 Zero-copy data object access

Efficient integration of data object access with the data-store is one of the major design points of
GEDS. Therefore, Tier Zero of GEDS implements support for zero-copy memory mapped data access.

3.2.2 Python Integration

GEDS integration with Python is achieved via Pybind11 [3]. PyBind11 along with GEDS and its
dependencies are built into a separate dynamic library pygeds.so.

Python libraries are built on top of pygeds.so. To ease integration with scientific applications we
built a plugin for [5], see Figure 2.

Figure 2: Python bindings for GEDS

Figure 3 exemplifies smart_open based client side Python integration with GEDS.

Figure 3: Using GEDS services from Python

In its current state the Python integration does not expose any memory-mapped files. Reads and
writes to objects are directly handled in GEDS. We plan to integrate support to integrate memory-
mapped files directly to the Python application.

3.2.3 Java Integration

GEDS provides the HDFS file system interface to allow for seamless integration with Java based
applications. Similar to the Python library we build a separate library for Java. We expose the same
set of API bindings via JNI to Java. We then wrap the native bindings with a separate set of Java
Classes to enable easy access to GEDS functionalities. Both geds_java.so and geds.jar containing
the dynamic library for Java and the GEDS bindings are shipped as dynamically compiled libraries.

A very common interface for accessing files is the Apache HDFS Filesystem library [4]. It is the
standard way to access files on both local and remote filesystems for Apache Spark [7] and many
other Java-based distributed computing frameworks.

GEDS implements a HDFS library that builds directly on the previously discussed Java bindings.
The GEDS-HDFS library implements input and output streams that can be consumed directly by any
Java application. It also wraps all the filesystem operations and maps them to GEDS (see [8] for the
current implementation of GEDS-HDFS). Figure 4 exemplifies a use case, where GEDS is deployed as
an ephemeral data store for Apache Spark.

3.3 Multi-tiering and object persistency

The definition of three storage tiers is mainly driven by the following goals:

Page 5 of 12

HORIZON - 101092646 CloudSkin
30/06/2023 RIA

Figure 4: Java integration with example Apache Spark application.

• Selectable persistency: Data objects residing only at Tier Zero are completely ephemeral. Any
node crash of a non-replicated object will make it unavailable. Tier 1 and Persistence Tier in-
troduce different levels of data persistency. Data objects can be replicated to these two tiers to
achieve persistency. Checkpointing working set data to a lower tier might be a typical use case.
At the current stage of GEDS design and implementation, the application interface for selecting
a certain level of object persistence is still undefined.

• Elasticity and scalability: The amount of data locally maintained at a node’s Tier Zero may be
limited by the node’s resources. Automatically spilling out less used objects to a lower storage
tier can mediate this situation under storage pressure. Spilling to Tier 1 is expected to have less
performance impact than spilling to the Persistence Tier.

Tier 1 will serve as a high performance storage tier, exceeding the performance of a remote KV
store (Persistence Tier). Its disaggregated implementation further helps to scale compute and
storage resources independently.

• Input/output integration: Typically, input and output of data intense workloads will be at a KV
store such as S3. Integrating that resource into the namespace of GEDS enables the generation
of seamless workflows. Logically, data reside in one data store during all stages of a workload,
while physically moving across storage tiers.

3.4 Elasticity

GEDS tries to keep storage resource consumption at its minimum. At Tier Zero, it does not require
the pre-allocation of any node memory before data objects are locally instantiated. Data objects are
instantiated with the local nodes file system (currently using /tmp) and, depending on the appli-
cation, are memory mapped for zero copy application access. With that approach, a node (1) never
consumes more local memory than the aggregated size of locally instantiated objects, and (2) a node’s
virtual memory may keep only parts of the data objects in physical memory under memory pressure.
Implicitly, there is no need to pre-allocate any storage resources with a compute node participating
in the GEDS namespace. Any level of current storage resource usage heterogeneity among compute
nodes is solely driven by current application data processing. This puts GEDS in stark contrast to
other high-performance ephemeral data store implementations, such as the Plasma data store inte-
gration, where all compute nodes are started with the same, pre-defined amount of DRAM resources
exclusively dedicated to the Plasma store [9].

It is planned to implement resource elasticity for Tier 1 as well, while it comes natural for using a
KV store based Persistence Tier.

3.5 Data object location awareness, steering and relocation

As provided by the MDS, the GEDS namespace describes each object by a unique string, the current
tier it is located in, and the host address of the node where it is located in case of Tier Zero. With that,
GEDS will enable the controlled co-location of compute and data objects at Tier Zero. Combined
with appropriate control over task/function scheduling policies, physical data transfers during job
execution can be minimized.

Another functionality enabled by data relocation within Tier 0 is the ability to decomission com-
pute entities, which do not participate in current workload execution, but still hold data objects from

Page 6 of 12

HORIZON - 101092646 CloudSkin
30/06/2023 RIA

Figure 5: Using pub/sub service for efficient task synchronization.

previous activities. Those data objects can be either relocated within Tier Zero or spilled out to a
lower storage tier.

Relocating data objects of course also serves as the mechanism to achieve data persistency (see
Section 3.3).

3.5.1 Supporting ephemeral tasks in a Cloud-edge scenario

In a Cloud-edge scenario, edge compute tasks may be ephemeral, but interact with the Cloud core.
GEDS provides mechanisms to provide this continuum by:

• Providing a shared object namespace covering edge and core: Irrespective of its current loca-
tion, data objects remain accessible for all compute entities involved.

• Enabling efficient data relocation: A compute entity, such as an edge device, may execute a
completely ephemeral task, disappearing after task execution, while the tasks data output is
relocated within the shared GEDS namespace, to be picked up by a followup task (see also
Figure 5).

3.6 Additional services

We plan to extend the functionality of GEDS beyond maintaining ephemeral data objects. At the
current stage of the project, we are investigating the suitability of adding a pub/sub-service, which
allows a client to register with the MDS for updates on the status of GEDS data objects. It will
allow triggering of client activities related to subscribed objects, such as the consumption of data
objects which are the result of a previous stage of data processing, avoiding the management of an
explicit control flow among stages, also enabling direct object transfers between consecutive tasks
(see Figure 5).

4 Status of the GEDS prototype

We integrated GEDS into Apache Spark benchmark for TeraSort and TPC-DS [10]. GEDS acts as a
ephemeral data-store for Spark shuffle, or as a transparent cache for the input data located on AWS

Page 7 of 12

HORIZON - 101092646 CloudSkin
30/06/2023 RIA

S3 or IBM COS.
Python applications support the simple smart_open interface for reading and writing files. Multi-

processing with Python requires communication over TCP: GEDS does not support sharing its state
on the local host yet.

Page 8 of 12

HORIZON - 101092646 CloudSkin
30/06/2023 RIA

4.1 Overall functionality

Table 1 depicts the overall implementation state of GEDS.

Table 1: State of GEDS

Feature State Comment
Basic Features

Create buckets Done
List buckets Done
Create objects Done
Update objects Done
Delete objects Done
List objects Done
Read from object Done POSIX-like read interface
Write to object Done POSIX-like write interface
Move objects Needs work In its current implementation objects are first

copied and then finally deleted.
Copy objects Needs work Objects are currently copied.

Copy-on-write semantics are desirable.
Advanced Features

File metadata support Needs work Allows attaching metadata to objects.
Memory-mapped file access Needs work Compile-time flag. Only works for local objects.

Requires additional semantics and design work.
Object store integration Needs work Object stores can be configured on a per-bucket basis.

Objects can be read and written.
Semantics for reading/writing needs to be investigated.

Object spilling Needs work First draft has been implemented.
Requires a configured object store.

Pub/Sub Support Needs work Pull request available but not yet integrated.
Object Caching Needs work Only objects stored on S3 are cached in GEDS.
Object Replication Not started Required for memory-mapping of remote objects.
Configurable resiliency Not started E.g. force write-back to S3 if a file is written.
Multi-process support Not started One GEDS instance is created per process.
NVMeOF Support Not started

Library Integration
Java integration Done HDFS input streams do not support ByteBuffers.
Python integration Needs work Not scalable since a new instance is created for each fork.

No data sharing between individual processes.
Simplified wrapper Not started GEDS.h needs to be wrapped and re-exported with no

external dependencies for seamless linking with
C#, Go or Rust.

NVIDIA CUDA integration Not started Expose GEDS objects in CUDA.
Fuse Filesystem Not started

Page 9 of 12

HORIZON - 101092646 CloudSkin
30/06/2023 RIA

4.2 IO Benchmark

GEDS implements a simple IO benchmark to understand the IO read performance of remote objects.
In Figure 7 we see throughput to access an object stored on a remote GEDS instance.

10 3 10 2 10 1 100 101 102

Payload Size MiB

0

1000

2000

3000

4000

5000

Th
ro

ug
hp

ut
 M

iB
/s

GEDS read performance
1 thread
2 threads
3 threads
4 threads
5 threads
6 threads
7 threads
8 threads
9 threads

10 3 10 2 10 1 100 101 102

Payload Size MiB

0

1000

2000

3000

4000

5000

Th
ro

ug
hp

ut
 M

iB
/s

GEDS read performance
10 threads
11 threads
12 threads
13 threads
14 threads
15 threads

Figure 6: GEDS Read Performance. Two GEDS clients are connected over a 40gbit/s network link.

4.3 Spark shuffle for single TPC-DS Queries

We ported the dis-aggregated Spark-S3-Shuffle plugin [11] to GEDS. This plugin directly integrates
into Apache Spark and is thus not able to serve per-client shuffle files. Thus we were required to use
the default shuffle algorithm which suffers from reading small block-sizes. We mitigate most of these
issues by asynchronously pre-fetching individual shuffle blocks, and by storing the index files in the
GEDS metadata service. In Figure 7 we show the performance of individual TPC-DS queries on the
IBM CodeEngine. GEDS supports spilling to an Object Store specifying a quota.

5 Conclusions and next steps

At the current stage of the CloudSkin project, a stable design of the GEDS data store has been
achieved. We started with implementing a GEDS prototype with limited functionality, which al-
ready achieved decent stability and performance. It is available as an active open source project [2, 8]
under Apache 2 License terms.

In particular, a Tier Zero implementation with limited functionality is available. Furthermore, we
started to implement the integration with the Persistency Tier. As of now, data objects can be loaded
from a KV store implementing the S3 interface and written out to it. The implementation of the Tier
1 has not yet started. We expect to be able to resemble its main intended functionality –spillover and
limited persistency– by the Persistency Tier with lower performance.

There remains substantial work to be done to achieve scalability for Python integration, aiming
at avoiding per-Python-Task replication of full GEDS client code on the same node.

Page 10 of 12

HORIZON - 101092646 CloudSkin
30/06/2023 RIA

50

100

150

200

250

300

350
Ru

nt
im

e
[s

]

q15

Spark 3.3.1
Spark 3.3.1 + Shuffle on GEDS - 16G quota
Spark 3.3.1 + Shuffle on GEDS - 2G quota
Spark 3.3.1 + Shuffle on IBM COS (IBM Spark-S3-Shuffle 0.7)
Spark 3.3.1 + Shuffle on IBM COS (AWS Chopper)

q30 q41 q49 q5 q63 q68 q75 q77 q99
TPCDS-1000 queries on IBM CodeEngine with Spark 3.3.1

Figure 7: TPC-DS performance for single queries. We compare the GEDS shuffle plugin with [11]
and [12].

References

[1] P. Stuedi, A. Trivedi, J. Pfefferle, A. Klimovic, A. Schuepbach, and B. Metzler, “Unification
of temporary storage in the NodeKernel architecture.,” in 2019 USENIX Annual Technical
Conference (USENIX ATC 19), 2019.

[2] “Hadoop filesystem implementation for GEDS.” https://github.com/IBM/GEDS.

[3] W. Jakob, J. Rhinelander, and D. Moldovan, “pybind11 – seamless operability between C++11
and Python.” https://github.com/pybind/pybind11, 2017.

[4] “The Hadoop FileSystem API definition.” https://hadoop.apache.org/docs/current/
hadoop-project-dist/hadoop-common/filesystem/index.html.

[5] R. Řehůřek, “smart_open – utils for streaming large files in Python.” https://github.com/
RaRe-Technologies/smart_open, 2015.

[6] https://docs.aws.amazon.com/AmazonS3/latest/userguide/Welcome.html.

[7] M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave, X. Meng, J. Rosen,
S. Venkataraman, M. J. Franklin, et al., “Apache spark: a unified engine for big data process-
ing,” Communications of the ACM, vol. 59, no. 11, pp. 56–65, 2016.

[8] https://github.com/IBM/GEDS-HDFS.

[9] P. Moritz, R. Nishihara, S. Wang, A. Tumanov, R. Liaw, E. Liang, W. Paul, M. I. Jordan, and
I. Stoica, “Ray: A distributed framework for emerging {AI} applications,” in 13th USENIX
Symposium on Operating Systems Design and Implementation, 2018.

Page 11 of 12

https://github.com/IBM/GEDS
https://github.com/pybind/pybind11
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/filesystem/index.html
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/filesystem/index.html
https://github.com/RaRe-Technologies/smart_open
https://github.com/RaRe-Technologies/smart_open
https://docs.aws.amazon.com/AmazonS3/latest/userguide/Welcome.html
https://github.com/IBM/GEDS-HDFS

HORIZON - 101092646 CloudSkin
30/06/2023 RIA

[10] R. O. Nambiar and M. Poess, “The making of tpc-ds,” in Proceedings of the 32nd International
Conference on Very Large Data Bases, 2006.

[11] P. Spörri, “Shuffle plugin for Apache Spark and S3 compatible storage services.” https://
github.com/IBM/spark-s3-shuffle, 2022.

[12] “Cloud shuffle storage plugin for apache spark.” https://docs.aws.amazon.com/glue/
latest/dg/cloud-shuffle-storage-plugin.html, 2022.

Page 12 of 12

https://github.com/IBM/spark-s3-shuffle
https://github.com/IBM/spark-s3-shuffle
https://docs.aws.amazon.com/glue/latest/dg/cloud-shuffle-storage-plugin.html
https://docs.aws.amazon.com/glue/latest/dg/cloud-shuffle-storage-plugin.html

	Executive summary
	Data store requirements for CloudSkin
	GEDS Design
	Overall Design – High-Level View
	Components
	Data object handling

	Efficient application integration
	Zero-copy data object access
	Python Integration
	Java Integration

	Multi-tiering and object persistency
	Elasticity
	Data object location awareness, steering and relocation
	Supporting ephemeral tasks in a Cloud-edge scenario

	Additional services

	Status of the GEDS prototype
	Overall functionality
	IO Benchmark
	Spark shuffle for single TPC-DS Queries

	Conclusions and next steps

