GD Funded by

CloudSkin O the European Union

HORIZON EUROPE FRAMEWORK PROGRAMME

CloudSkin

(grant agreement No 101092646)

Adaptive virtualization for Al-enabled Cloud-edge
Continuum

D3.2 Ephemeral Data Store Release Candidate and
Specifications

Due date of deliverable: 31-12-2023
Actual submission date: 29-12-2023

Start date of project: 01-01-2023 Duration: 36 months

Summary of the document

Document Type Report
Dissemination level Public

State v1.0

Number of pages 12

WP/Task related to this document | WP3 / T3.2

WP/Task responsible IBM

Leader Bernard Metzler (IBM)

Technical Manager

Ratl Gracia (DELL)

Quality Manager

Marc Sanchez-Artigas (URV)

Author(s)

Bernard Metzler + Pascal Sporri (IBM)

Partner(s) Contributing

IBM, DELL, URV

Document ID

CloudSkin_D3.2_Public.pdf

Abstract

Interim report with details on data store design including
performance tier, disaggregated storage tier and integra-
tion with persistent data store for checkpointing/recovery.
Early access prototypes and initial results from benchmark-
ing framework and experiments.

Keywords

Key-value store, ephemeral data, persistency, elasticity,
checkpointing.

History of changes

Version | Date Author Summary of changes
0.1 11-12-2023 | Bernard Metzler, | First draft.
Pascal Sporri
0.2 14-12-2023 | Bernard Metzler, | Benchmarks results added.
Pascal Sporri
0.3 15-12-2023 | Bernard Metzler, | Text enhancements and reordering.
Pascal Sporri
0.4 18-12-2023 | Bernard Metzler, | Grafana monitoring added.
Pascal Sporri
0.5 20-12-2023 | Raul Gracia Pravega integration added.
1.0 28-12-2023 | Marc Sanchez Text and content enhancenments, text polishing and

final version.

HORIZON - 101092646 CloudSkin
29/12/2023 RIA

Table of Contents

1 Executive summary 2
2 Status of the GEDS Data Store Design and Implementation 3
2.1 Functional Overview 3

2.2 Configurable Object Spilling 3

23 Monitoring 3
24 Benchmarks 4

2.5 Architectural Redesign 6
251 Motivation 7

2.5.2 New GEDS Client Architecture 7

2.6 Data Confidentiality and Encryptionin GEDS 8
2.6.1 SCONE Integration 8

262 Nextsteps e 8

2.7 Pravegalntegration o 9
2.8 Stabilizationand Bug Fixes o0 . 9

3 GEDS Persistency Tier 9
31 Overview e 10
3.2 Properly supporting persistency L L 10
3.3 Snap-Shot& Restore 10

4 Conclusion and Outlook 11

HORIZON - 101092646 CloudSkin
29/12/2023 RIA

List of Abbreviations and Acronyms

Al Artificial Intelligence

API Application Programming Interface
AWS Amazon Web Services

CC Creative Commons

CoW Copy-on-Write

CsI Container Storage Interface

CSv Comma-separated values

CUDA Compute Unified Device Architecture
DOI Digital Object Identifier

GEDS Generic Ephemeral Data Store
GPU Graphics Processing Unit

HDFS Hadoop Distributed File System

I0 Input/Output

JNI Java Native Interface

KV Key/Value

LTS Long-Term Storage

MDS Metadata Service

ML Machine Learning

NVMe NonVolatile Memory express

NVMeoF NVMe over Fabrics

POSIX Portable Operating System Interface

RDMA Remote Direct Memory Access

RPC Remote Procedure Call

S3 Amazon Simple Storage Service

TCP Transmission Control Protocol

TEE Trusted Execution Environment

TPC-DS Transaction Processing Performance Council Benchmark - Decision Support
WAL Write-ahead log

Page 1 of 12

HORIZON - 101092646 CloudSkin
29/12/2023 RIA

1 Executive summary

The Generic Ephemeral Data Store (GEDS) aims at the efficient handling of temporary data as being
created, exchanged and consumed by compute tasks of a complex computational workload. Com-
pared to available high performance application specific storage solutions and generic key-value
stores, GEDS strives to provide an ephemeral data storage service, which balances universality and
performance. The data store comprises multiple storage tiers. Efficiency is achieved by direct integra-
tion of application buffers with the lowest tier (Tier 0). Subsequent storage tiers: the Disaggregated
NVM Tier and the Persistency Tier, have been introduced to provide node-independent storage re-
sources and object persistency, respectively. GEDS can be seen as a successor of the Crail [1] data
store, which was designed around the assumption of system wide availability of high-speed RDMA
networking, allowing a radical performance tailored design, but missed general applicability in to-
day’s cloud and edge computing environments.

We aim at using GEDS as a generic ephemeral data store within the CloudSkin project, with a
distinct focus on the specific requirements of a data store for serverless workload execution environ-
ments in a cloud core-edge continuum.

As of the time of this M12 CloudSkin report, a stable prototype of the GEDS data store as available
for M6 was extended with: (1) The completion of the S3 Tier integration; (2) Fixes to the TCP transport
subsystem; (3) Configurable object spilling; and (4) A basic solution for supporting data persistency
for checkpointing/recovery using the integrated Persistence Tier. A stable open source Version 1 is
available at Github [2].

Currently, GEDS is undergoing a redesign aimed at enhancing resource efficiency in an envi-
ronment featuring multiple storage clients per node. In the initial GEDS design, a distinct storage
client with an integrated Tier 0 was instantiated for each application process utilizing GEDS services.
However, the proposed redesign consolidates the Tier 0 instances to one per node. Applications
utilizing GEDS services will establish connections to this single instance through a lightweight client
library. This approach eliminates the need for full-fledged RPC communication among GEDS clients,
especially when they are localized to the same node. Importantly, the redesign does not impact the
established GEDS API. For integration and testing, the latest stable version as available on [2] shall
be used.

GEDS exports application bindings for both Python applications via smart_open[3] and Java ap-
plications via HDEFS interface.

Page 2 of 12

HORIZON - 101092646 CloudSkin
29/12/2023 RIA

2 Status of the GEDS Data Store Design and Implementation

2.1 Functional Overview

This section summarizes the development status of GEDS. Main changes compared to the status
reported in [4] are improvements to features not completely implemented 6 months ago. Table 1
depicts the overall implementation state of GEDS. Resulting advanced state is marked in italic. The
current implementation state is tagged as Version 1.0 in [2].

2.2 Configurable Object Spilling

The combination of multi-tiering and object relocation features of GEDS enables elastic per-node
storage resource provisioning. In cases where the available local DRAM memory for GEDS to store
objects in Tier 0 is limited, any excess object storage requirements seamlessly result in the relocation
of objects from Tier O to the S3 Tier, also known as the Persistency Tier. In the current version of GEDS,
an LRU (Least Recently Used) policy is implemented to transfer the least recently used objects to S3.

Running a complex workload with potentially multiple stages and task execution parallelism can
benefit from this automated object spilling mechanism for two reasons:

¢ In case of limited local node storage resources, workloads with excessive resource requirements
can be run to completion without failure.

¢ Imbalanced workloads (due to, e.g. workload skewing), or single intermediate execution stages
with extreme storage requirements would require the provisioning of that maximum expected
storage to all workload execution entities from the beginning. Left side of Figure 1 illustrates
resource usage fluctuations over time for a TPC-DS [7] query run with Apache Spark. In case
a computational task cannot be run to completion due to missing storage resources, Apache
Spark would retry its execution, but finally fail (Figure 1, right side).

Elastic spilling of data objects to the Persistency Tier avoids application failure and limits resource
costs.

TPC-DS 1000 - 30 executors Q67 - 4 executors

5 1 14
| |
o= .

Application failure

v

IS

Pod ephemeral storage [GB]

5

=
o
w

-
w

104

Executor
Executor

N
o
N

154

Pod ephemeral storage [GB]

Variations
over time

N
v
-

w
o

o

=
o
o

NS
o o

Total [GB]
w
o
Total [GB]

0 1000 2000 3000 4000 5000 6000 0 500 1000 1500 2000 2500 3000 3500
Run time [s] Run time [s]

Figure 1: Spark with TPC-DS workload — Query 67. Resource utilization and final application crash.

2.3 Monitoring

GEDS exposes performance statistics on each client. These statistics can be monitored by Prometheus [6]
and visualized in Grafana [8].

In Figure 2, we provide a screenshot of GEDS running TPC-DS [7] Query 67 (q67) with Apache
Spark deployed on 12 Kubernetes pods. q67 generates 67GB of intermediate shuffle data in total. In
order to trigger spilling, we artificially limited the available storage on each pod to only 2GB. The
screenshot shows how GEDS spills data to a local object store and automatically fetches data from
remote locations.

Page 3 of 12

HORIZON - 101092646

CloudSkin

29/12/2023 RIA
Table 1: State of GEDS at M12
Feature State Comment
Basic Features
Create buckets Done
List buckets Done
Create objects Done
Update objects Done
Delete objects Done
List objects Done
Read from object Done POSIX-like read interface.
Write to object Done POSIX-like write interface.
Move objects Done In its current implementation objects are first

Copy objects

Needs work

copied and then finally deleted.
Objects currently copied. Copy-on-write (COW)
semantics desirable.

Advanced Features

File metadata support

Memory-mapped file access

Needs work
Needs work

Allows attaching metadata to objects.
Compile-time flag. Only works for local objects.
Requires additional semantics and design work.

Python integration

Simplified wrapper

Fuse Filesystem
Prometheus integration

NVIDIA CUDA integration

Needs work
Not started
Not started

Not started
Prototype

Object store integration Done Object stores can be configured on a per-bucket basis.
Objects can be read and written.
Object spilling Done Requires a configured object store.
Pub/Sub Support Needs work | Pull request available but not yet integrated.
Integration deferred to new client architecture.
Object Caching Done Only objects stored on S3 are cached in GEDS.
Object Replication Not started | Required for memory-mapping of remote objects.
Configurable resiliency Not started | E.g., force write-back to S3 if a file is written.
Multi-process support Started One GEDS instance created per process. Release of
functionality deferred to new major GEDS software release.
NVMeOF Support Not started
Library Integration
Java integration Done HDFS [5] input streams do not support ByteBuffers.

Not scalable since a new instance is created for each

fork. No data sharing between individual processes.

GEDS.h needs to be wrapped and re-exported with no
external dependencies for seamless linking with

C#, Go or Rust.

Expose GEDS objects in CUDA.

Local GEDS object access via file system abstraction.

GEDS exposes a web-server to export performance statistics.
that can be ingested by Prometheus [6].

2.4 Benchmarks

We re-evaluated GEDS performance in a multi-tiered setup. Here, we evaluate the impact of GEDS’s
automated spilling in application performance in cases where Tier 0 resources are exhausted. We

Page 4 of 12

HORIZON - 101092646 CloudSkin
29/12/2023 RIA

GEDS - Aggregated /O statistics

Figure 2: Grafana visualization of GEDS metrics. GEDS is running in a local Kubernetes cluster with
a Prometheus deployment.

assume a virtually infinite Persistence Tier to focus on the impact of automated object spilling without
side effects.

Experiment. We ran four TPC-DS queries (q49, g5, 467, q75) in Apache Spark, with a particular focus
on the highly I/O-intensive queries q67 and q75. The experimental setup involved 12 Kubernetes
pods, each equipped with 4 cores and 32GB of DRAM. Additionally, we allocated 16GB of tmpfs (a
file system for creating memory devices) per pod. Each pod hosts one Spark executor. We compare
the outcomes obtained from two configurations: the first involves vanilla Spark with sufficient local
storage, while the second employs our Spark Shuffle plugin [9] to manage all shuffle I/O data'. This
shuffle plugin is connected either directly to IBM COS [11] using its S3-compatible API or to GEDS.
GEDS in turn is connected to the same IBM COS instance for spilling excessive data. Additionally,
we extend our comparison to include the utilization of AWS’s Spark Shuffle plugin (referred to as
Chopper, see [10]) serving as the Spark frontend to IBM COS. To simulate local resource constraints
for GEDS, we limit the GEDS Tier 0 resources to 16GB and 2GB, respectively. All experiments were
conducted in IBM Cloud Code Engine serverless environment [12].

Results. Figure 3 shows the results of this experiment. Overall, it becomes evident that the utilization
of GEDS has a negligible impact on application performance, even when operating under significant
local resource constraints. Directly spilling to the Persistency Tier (IBM COS) always comes with a
performance penalty, which of course depends on the amount of data spilled (with a slight advantage
for our Spark spilling plugin compared to AWS’s solution). For I/O intensive TPC-DS queries, GEDS
is able to spill a varying amount of data to S3, with virtually no performance impact, even under the
imposed 2GB size limit for local Tier 0 (see q67 and q75 results).

IShuffling refers to the operation of transferring data between partitions, allowing data rows to move between executors
when their source partition and the target partition reside on different machines.

Page 5 of 12

HORIZON - 101092646 CloudSkin
29/12/2023 RIA

TPCDS-1000 queries on IBM CodeEngine with Spark 3.3.1

q49 a5 q67 q75
800 A 1 -i % é
600 -
w
)
E
§400_ 1.1GB J 9.6GB J 42GB 66GB J 4GB 20GB
1.1GB 9.6GB 66GB 24GB 20GB 16GB ? @
200 A =
- -
-
- = = = = - - =
Spark 3.3.1 Required Local Shuffle Storage

Spark 3.3.1 + Shuffle on GEDS - 16G quota

Spark 3.3.1 + Shuffle on GEDS - 2G quota

Spark 3.3.1 + Shuffle on IBM COS (IBM Spark-S3-Shuffle)
Spark 3.3.1 + Shuffle on IBM COS (AWS Chopper)

Storage on IBM COS

nu

Figure 3: Apache Spark TPC-DS query execution with different resource constraints and data shuffle
storage systems: 1. GEDS; 2. IBM COS with IBM Spark S3 shuffle plugin [9]; and 3. IBM COS with
AWS Chopper [10].

2.5 Architectural Redesign

The existing architecture of GEDS does not assume any specific mechanism for handling the sharing
and exchange of data objects among GEDS clients when they are co-located on the same physical
node. As of today, access to data objects is consistently orchestrated through the Metadata Server and
performed through TCP/IP communication, irrespective of whether the clients are located locally or
remotely. While this approach simplifies the overall design, it foregoes important opportunities for
performance and resource optimization that could be leveraged from client co-location.

GEDS shall be redesigned to support multiple local instances more efficiently. A central daemon
will be responsible for managing files and sharing files between other daemons.

Goals:
¢ Enable data-sharing of GEDS objects between multiple Python processes.

e Enable data-sharing of GEDS objects across Kubernetes pods using a CSI Hostpath?.
¢ Data should survive crashes.

* Facilitate encryption.

* Enable reading/writing data to/from GPU and/or NVMe directly.

¢ Native integration with Kubernetes.

2CsI Hostpath is a Container Storage Interface (CSI) driver that allows containers to use a directory on the host machine
as a volume within a pod.

Page 6 of 12

HORIZON - 101092646 CloudSkin
29/12/2023 RIA

2.5.1 Motivation

As of today, GEDS clients need to communicate over the GEDS TCP stack in order to copy the content
of a single file from one client to another. This approach becomes highly inefficient when processes
running on the same physical machine need to read and write the same data.

2.5.2 New GEDS Client Architecture

GEDS runs as a daemon on a separate process or in a dedicated Kubernetes pod (see Figure 4 below).
GEDS clients write and read to a mounted filesystem or a Kubernetes CSI Hostpath used to share
the data between pods co-located in the same Kubernetes node. In the diagram below, each gray box
represents a physical Kubernetes node. We also want to signal that the new design has been crafted
with extensibility in mind, e.g., to support NVMeoF® and GPU Direct RDMA in the future, so that,
for instance, multiple NVMe SSDs can be remotely accessed and operated independently (NVMe
JBOD in Figure 4 stands for "Non-Volatile Memory Express Just a Bunch Of Disks).

Kubernetes Node
Kubernetes Pod
IPC I
>I GEDS Client | Apache Spark |
—~ IPC
GEDS Demon [«
Kubernetes Pod
Kubernetes Pod GEDS Client | Python+Pytorch
PVC/Local SSD
>{ GEDS Client |Python+Pytorch
TCP/IP
Kubernetes Node
Kubernetes Pod
GEDS Client
GEDS Demon yY
/0 + MMAP,
Kubernetes Pod Hostpath CSI
IVIants
PVC/Local SSD |« GPU Direct
GPU
-
GPU Direct RDMAL NVMeOF|
A 4
NVMe JBOD

Figure 4: GEDS deployment in envisioned Daemon Mode.

Objects created in GEDS are represented as files directly. GEDS Clients will transfer the ownership
of the created files to the GEDS Daemon. The GEDS Daemon will then be responsible for managing
the lifecycle of the created and opened objects. Put in a nutshell, the GEDS Daemon will a reference
counter for each open file. When a file is no longer open, the GEDS Daemon will initiate its relocation
to the Persistency Tier, built upon IBM COS or AWS S3, or another designated object store. This

3NVMe over Fabrics (NVMeoF) is a storage protocol that extends the NVMe (Non-Volatile Memory Express) storage
interface from a local storage system to a storage network, allowing remote access to NVMe storage devices.

Page 7 of 12

HORIZON - 101092646 CloudSkin
29/12/2023 RIA

process will ensure efficient management and storage of objects within the GEDS system.

Update semantics. If a client wants to modify a file, a copy will be first created by the GEDS Daemon.
The client then will modify the copy. That is, changes made to this file will only become visible when
a file is reopened. This will ensure consistency for clients reading a file, implementing a simple CoW
(Copy-on-Write) mechanism.

This simple design fulfills most of our needs. For instance, by exploring analytics tools such as
Spark and Apache Ray* storage APIs we found out that file re-writing does not happen very often.
Some formats, like Parquet, put metadata at the end of the file. Immediately broadcasting changes
to a file would lead to inconsistencies when concurrently reading the file by multiple clients. Thus, a
synchronization point in the consumer application is required anyway. Forcing the clients to reopen
ensures that applications can complete their tasks without encountering invalid or inconsistent data.

2.6 Data Confidentiality and Encryption in GEDS

We started initial design work to support data confidentiality and encryption in GEDS. At this point
in time GEDS communicates over plaintext protocols and requires the underlying infrastructure (e.g.,
Kubernetes) to handle the confidential processes. Files are not encrypted, and additionally, GEDS
relies on the encryption-at-rest features of AWS S3 or IBM COS to protect data confidentiality.

While single-user /customer clusters can be considered secure-enough, shared clusters and multi-
cloud clusters require additional protection. In this context, a key objective of GEDS in a near future is
to harness Confidential Computing technologies based on Trusted Execution Environments (TEEs),
such as SCONE [13] by TU Dresden. Concretely, TU Dresden collaborates within the WP4 (Work
Package 4) of the project, with the aim of enhancing data security by implementing these additional
protective measures.

2.6.1 SCONE Integration

The CloudSkin project aims at integration of the SCONE Confidential Computing solution [13] with
its compute infrastructure and use cases. Adding support for SCONE would allow GEDS to provide
additional security features in enhanced deployments:

¢ SCONE will be responsible to provide the secrets for accessing object stores such as AWS S3.
Secrets will be either provided as environment variables or as part of a configuration file.

e SCONE technology would be responsible for encrypting the data at rest. As SCONE already
supports the encryption of files written to a folder, integrating it into GEDS would enable GEDS
to support encryption-at-rest features, such as those offered by AWS S3.

¢ The SCONE Network shield protects unencrypted communication for applications. Integrating
this technology into GEDS would enhance the communication security between the various
components within the GEDS software stack. Essentially, it provides a means to safeguard the
exchange of information, contributing to the overall security posture of GEDS.

2.6.2 Next steps
Related to the above goals, the tasks to performed in the next months will be the following:

Securing access credentials. GEDS needs to integrate support for reading SCONE credentials and
Kubernetes secrets. This way object store credentials can be shared without explicitly storing them
on the GEDS Metadata service.

Encrypting data at rest. GEDS needs to add support for encrypting data moved from the protected
enclave such as Intel SGX to an external object store. This can be addressed by leveraging the client-
side encryption using the AWS S3 encryption client’. An additional benefit will be the possibility

4 Apache Ray, https://wwu.ray.io/
SWhat is the Amazon S3 Encryption Client?, https://docs.aws.amazon.com/amazon-s3-encryption-client/
latest/developerguide/what-is-s3-encryption-client.html

Page 8 of 12

https://www.ray.io/
https://docs.aws.amazon.com/amazon-s3-encryption-client/latest/developerguide/what-is-s3-encryption-client.html
https://docs.aws.amazon.com/amazon-s3-encryption-client/latest/developerguide/what-is-s3-encryption-client.html

HORIZON - 101092646 CloudSkin
29/12/2023 RIA

of downloading the created objects with any other S3 client implementation of the same encryption
mechanisms.

Securing communication between GEDS Clients and Metadata Service. While communication
between GEDS components will remain protected with SCONE, protocol encryption is not available
for environments without SCONE support. Securing communication between the GEDS Clients and
the Metada Service should be accomplished irrespective of SCONE. We see this as an optional second
tier feature.

2.7 Pravega Integration

Pravega is a tiered storage system for data streams [14, 15]. Within the WP3 (Work Package 3) of the
CloudSkin project, Pravega is the main technology to provide high-performance and durable data
stream storage for streaming workloads, such as in the NCT computer-assisted surgery use case.
One of the main design characteristics of Pravega is storage tiering. That is, data events in Pravega
are first written to the write-ahead log (WAL), and then the system automatically groups events
belonging to the same stream segment to offload them to long-term storage (LTS). Storage tiering is
part of the data ingestion path in Pravega. This means that if either WAL or LTS are not reachable or
too slow, Pravega would eventually throttle writers to prevent an unbounded backlog of incoming
data.

While this mechanism is good for protecting the system, it is not hard to image that in some cases,
such as the computer-assisted Edge video analytics of NCT, could entail some risks. To clarify, in the
context of the NCT use-case, the network connection of the Edge server in the surgery room could
be unstable for a long period. This instability could result in Pravega being unable to persistently
offload data to Long-Term Storage (LTS). In this situation, Pravega writers would be throttled, and
this would prevent an ongoing surgery from using video analytics. One of the planned mitigations
for this problem is to use GEDS as an LTS option for Pravega. Via the HDEFS interface, Pravega could
offload data to GEDS. At this point, GEDS would be offloading that data to the actual LTS system that
is supposed to store historical video data from surgeries (e.g., object store, file system). In the case
of network unstability, GEDS would take care of buffering video data from Pravega in different local
storage tiers until the network connection becomes stable again and the storage offload resumes.

2.8 Stabilization and Bug Fixes

During the course of the last 6 months, GEDS code stability was constantly improved. For instance,
one major issue affecting the efficiency of TCP-based object transfer subsystem was solved: During
the simultaneous initialization of GEDS clients, we made sure that a potential cross-connect between
both entities does not result in excessive TCP connections.

3 GEDS Persistency Tier

By default, GEDS provides no persistency. GEDS relies on external object stores and filesystems to
provide persistency for objects. As a default behavior, objects created using GEDS stay within the
GEDS system. To provide persistency to object, GEDS can be configured to always spill created files
to an attached object store. This mode asynchronously uploads files to the associated object store in
the background. Furthermore, GEDS can be configured to persist files when GEDS is shut down.
Integrating a native persistency and snap-shot & restore functionality is desirable to enable use-
cases such as training machine learning (ML) models, where the current state of the model, including
its parameters and other relevant metadata, may need to be saved at specific intervals during model
training. With this functionality, GEDS will allow developers to later resume training from the saved
checkpoint rather than starting from scratch. From the Al-enabled continuum perspective, snap-shot
& restore functionality may be also useful to the Learning Plane developed in W5 (Work Package 5)
to recover the state of a given model and continue training from the last saved point. Moreover, an
application leveraging GEDS might want to explicitly tell GEDS to create a snapshot of an object.

Page 9 of 12

HORIZON - 101092646 CloudSkin
29/12/2023 RIA

3.1 Overview

GEDS exposes programming language filesystem wrappers like HDFS [5], smart_open [3] or fsspec [16]
that emulate file-system access for efficient integration into existing applications and pipelines. For
instance, smart_open is a Python 3 library for efficient streaming of very large files from and to object
stores such as AWS S3. In order to effectively integrate persistency into GEDS, we have to translate
filesystem wrapper concepts to GEDS.

3.2 Properly supporting persistency

The GEDS configuration and API has to be extended in such a way that objects are mirrored to the
underlying object store by default. The upload of a file should then tied to the close operation of the
tilesystem wrapper.

3.3 Snap-Shot & Restore

In contrast to persistency, “Snap-Shot & Restore” cannot be directly mapped to a filesystem wrapper
concept. In its most simplest form a “Snap-Shot” could be triggered by calling close on the opened
file on GEDS. However, we don’t believe that this is a good solution: A close can trigger all sort of
side-effects, such as the object automatically being relocated to the associated object store.

The next obvious step would be to integrate an extra API that creates the snapshot. This would
allow applications leveraging the native GEDS API to create and restore snapshots. To this aim, the
snapshot functionality of the associated object store will be leveraged as much as possible.

Page 10 of 12

HORIZON - 101092646 CloudSkin
29/12/2023 RIA

4 Conclusion and Outlook

At the current stage of the project, the GEDS store is prepared for integration with the majority of
workloads. A stable open source Version 1 can be downloaded from GitHub [2]. While keeping the
interfaces of this prototype stable for application integration, we are also enhancing its functionality
and implementing some re-design to achieve higher resource efficiency, as detailed in Section 2.5.

As shown in Section 2.4, one large potential benefit of using GEDS as a data store is its seamless
management of available local memory resources. If the GEDS Persistence Tier is integrated with
AWS S3 (or other, filesytem based) backup store, applications can execute workloads whose storage
requirements exceed the capacity of the used compute systems, while not necessarily encountering a
performance penalty.

GEDS maintains an elastic design very appropriate for the CloudSkin use cases, where individual
data store clients can be added and removed dynamically. Also, the inclusion of the Persistency Tier
is key for transparently and dynamically managing transparent data node local resource shortages.

We will extend the GEDS Ephemeral Data Store with persistency functionality as required by
CloudSkin applications. Persistency will be mapped to locating data objects within the Persistency
Tier. Section 3 discusses the envisioned approach.

We envision to enhance GEDS with data encryption and confidentiality. The integration of GEDS
with the SCONE Confidential Computing solution has just started. We are working with our project
partners at TU Dresden to develop an appropriate design.

Page 11 of 12

HORIZON - 101092646 CloudSkin
29/12/2023 RIA

References

[1] P. Stuedi, A. Trivedi, J. Pfefferle, A. Klimovic, A. Schuepbach, and B. Metzler, “Unification
of temporary storage in the NodeKernel architecture.,” in 2019 USENIX Annual Technical
Conference (USENIX ATC 19), 2019.

[2] “Hadoop filesystem implementation for GEDS.” https://github.com/IBM/GEDS.

[3] R. Rehtifek, “smart_open — utils for streaming large files in Python.” https://github.com/
RaRe-Technologies/smart_open, 2015.

[4] “Early release of Ephemeral Data Store.” Deliverable D3.1 of CloudSkin project. https://
cloudskin.eu/assets/deliverables/CloudSkin_D3.1_Public.pdf.

[5] “The Hadoop FileSystem API definition.” https://hadoop.apache.org/docs/current/
hadoop-project-dist/hadoop-common/filesystem/index.html.

[6] “Prometheus, an open-source systems monitoring and alerting toolkit.” https://www.
prometheus.io/, 2012.

[7] R. O. Nambiar and M. Poess, “The making of tpc-ds,” in Proceedings of the 32nd International
Conference on Very Large Data Bases, 2006.

[8] T.Odegaard, “Grafana, an open-source analytics and interactive visualization web-application.”
https://www.grafana.com/, 2014.

[9] P. Sporri, “Shuffle Plugin for Apache Spark and S3 compatible storage services.” https://
github.com/IBM/spark-s3-shuffle, 2022.

[10] “Cloud Shuffle Storage Plugin for Apache Spark.” https://docs.aws.amazon.com/glue/
latest/dg/cloud-shuffle-storage-plugin.html, 2022.

[11] “IBM Cloud Object Store.” https://www.ibm.com/products/cloud-object-storage.
[12] “Serverless on IBM Cloud.” https://www.ibm.com/products/code-engine.
[13] “SCONE - Confidential Computing.” https://sconedocs.github.io.

[14] R. Gracia-Tinedo, F. Junqueira, T. Kaitchuck, and S. Joshi, “Pravega: A tiered storage system for
data streams,” in Proceedings of the 24th International Middleware Conference on Middleware,
pp. 165-177, 2023.

[15] R. Gracia-Tinedo, F. Junqueira, B. Zhou, Y. Xiong, and L. Liu, “Practical storage-compute elastic-
ity for stream data processing,” in Proceedings of the 24th International Middleware Conference
Industrial Track, pp. 1-7, 2023.

[16] M. Durant, “fsspec: Filesystem interfaces for Python.” https://filesystem-spec.
readthedocs.io/en/latest/, 2018.

Page 12 of 12

https://github.com/IBM/GEDS
https://github.com/RaRe-Technologies/smart_open
https://github.com/RaRe-Technologies/smart_open
https://cloudskin.eu/assets/deliverables/CloudSkin_D3.1_Public.pdf
https://cloudskin.eu/assets/deliverables/CloudSkin_D3.1_Public.pdf
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/filesystem/index.html
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/filesystem/index.html
https://www.prometheus.io/
https://www.prometheus.io/
https://www.grafana.com/
https://github.com/IBM/spark-s3-shuffle
https://github.com/IBM/spark-s3-shuffle
https://docs.aws.amazon.com/glue/latest/dg/cloud-shuffle-storage-plugin.html
https://docs.aws.amazon.com/glue/latest/dg/cloud-shuffle-storage-plugin.html
https://www.ibm.com/products/cloud-object-storage
https://www.ibm.com/products/code-engine
https://sconedocs.github.io
https://filesystem-spec.readthedocs.io/en/latest/
https://filesystem-spec.readthedocs.io/en/latest/

	Executive summary
	Status of the GEDS Data Store Design and Implementation
	Functional Overview
	Configurable Object Spilling
	Monitoring
	Benchmarks
	Architectural Redesign
	Motivation
	New GEDS Client Architecture

	Data Confidentiality and Encryption in GEDS
	SCONE Integration
	Next steps

	Pravega Integration
	Stabilization and Bug Fixes

	GEDS Persistency Tier
	Overview
	Properly supporting persistency
	Snap-Shot & Restore

	Conclusion and Outlook

