
HORIZON EUROPE FRAMEWORK PROGRAMME

CloudSkin
(grant agreement No 101092646)

Adaptive virtualization for AI-enabled Cloud-edge
Continuum

D3.4 Reference implementation of Cloud native
Infrastructure

Due date of deliverable: 31-12-2025
Actual submission date: 29-12-2025

Start date of project: 01-01-2023 Duration: 36 months

Summary of the document

Document Type Report

Dissemination level Public

State v1.0

Number of pages 25

WP/Task related to this document WP3 / T3.1, T3.2, T3.3

WP/Task responsible IBM

Leader Robert Haas (IBM)

Technical Manager Raúl Gracia-Tinedo (DELL)

Quality Manager Raúl Gracia-Tinedo (DELL)

Author(s) Raúl Gracia-Tinedo (DELL), Hossam Elghamry (DELL),
Alan Cueva (DELL), Pablo Gimeno Sarroca (URV), Marc
Sanchez-Artigas (URV), Radu Stoica (IBM)

Partner(s) Contributing IBM, DELL, URV

Document ID CloudSkin_D3.4_Public.pdf

Abstract Final report that details design of mechanisms and evalua-
tion results for the outcomes of each task of WP3, focused
on the CloudSkin dataplane infrastructure and platforms.
This report will also include the release of produced frame-
works and technologies through open source publication
platforms.

Keywords Key-value store, ephemeral data, persistency, elasticity, ob-
ject store, storage tiering, long-term storage, WebAssembly,
streaming, data pipelines, cloud, edge.

History of changes

Version Date Author Summary of changes

0.1 19-12-2025 Raúl Gracia-Tinedo (DELL), Hos-
sam Elghamry (DELL), Alan Cueva
(DELL), Pablo Gimeno Sarroca
(URV), Marc Sanchez-Artigas
(URV), Radu Stoica (IBM)

First draft of all sections

0.2 21-12-2025 Pablo Gimeno Sarroca (URV) Updated GEDS Wasm section

0.3 23-12-2025 Marc Sanchez-Artigas (URV) Full review of the deliverable

1.0 26-12-2025 Radu Stoica (IBM) Review and final version.

HORIZON - 101092646 CloudSkin
29/12/2025 RIA

Table of Contents

1 Executive summary 2

2 GEDS overview 3
2.1 Background . 3
2.2 Motivation and Problem Statement . 3
2.3 GEDS Architecture and Design . 3

2.3.1 Multi-Tiered Storage Hierarchy . 3
2.3.2 Metadata Service (MDS) . 4

2.4 Key Features and Interoperability . 4
2.4.1 Zero-Copy Integration . 4
2.4.2 Language Bindings and APIs . 4
2.4.3 Elasticity and Resilience . 4

2.5 Use Cases and Performance Evaluation . 4
2.6 Summary . 5

3 GEDS-based WebAssembly Units 6
3.1 Background and motivation . 6
3.2 GEDS-Wasm integration . 8

3.2.1 Integration architecture . 8
3.2.2 WASI hostcall interposition . 9

3.3 Evaluation . 10
3.3.1 Performance microbenchmarks . 11
3.3.2 Data migration in GEDS-based WebAssembly Units and external alternatives . 12

3.4 Summary . 13

4 Nexus: Programmable Data Management across the Cloud-Edge Continuum 14
4.1 Motivation . 14
4.2 Nexus in a Nutshell . 15
4.3 Nexus in Action . 16
4.4 Validation . 18

4.4.1 Setup . 18
4.4.2 Interception Performance . 19
4.4.3 Enhancing Event Streaming Systems . 20

5 Conclusions 23

i

HORIZON - 101092646 CloudSkin
29/12/2025 RIA

List of Abbreviations and Acronyms

API Application Programming Interface

AWS Amazon Web Services

CC Creative Commons

CLI Command Line Interface

CSV Comma-separated values

DOI Digital Object Identifier

EKS Elastic Kubernetes Service

FFI Foreign Function Interface

FPS Frames Per Second

FUSE File-system in User Space

GEDS General Ephemeral Data Store

GPU Graphics Processing Unit

HDFS Hadoop Distributed File System

HTTP Hypertext Transfer Protocol

I/O Input/Output

JPEG Joint Photographic Experts Group

MPI Message Passing Interface

NCT Network-Centric Therapy

OS Operating System

POSIX Portable Operating System Interface

RDMA Remote Direct Memory Access

S3 Simple Storage Service

SHMEM Shared Memory

SRA Sequence Read Archive

TEE Trusted Execution Environment

VM Virtual Machine

WAL Write-Ahead Log

WASI WebAssembly System Interface

Wasm WebAssembly

Page 1 of 25

HORIZON - 101092646 CloudSkin
29/12/2025 RIA

1 Executive summary

This deliverable presents an updated and consolidated overview of the CloudSkin dataplane plat-
form activities, focusing on the storage systems developed, including their implementation and ar-
chitecture, functionality, APIs and use-case integrations. The work performed is within the context
of WP3: Infrastructure Support for the Virtual Cloud-Edge Continuum.

The document first summarizes the existing GEDS progress as described previously in deliver-
ables D3.1, D3.2 and D3.3. It then presents two further complementary contributions to advance
programmable, data-intensive processing across the cloud–edge continuum and Learning Plane: 1)
GEDS-based WebAssembly Units, and 2) Nexus, a programmable data management mesh evolv-
ing from the GEDS experience, to further enable transparent, near-data computation shipping and
execution. Together, the two GEDS and Nexus systems address fundamental limitations in today’s
cloud–edge data processing stacks by enabling computation closer to data, transparent storage tier-
ing, and policy-driven data transformation.

GEDS-based WebAssembly Units extend WebAssembly beyond its current WASI limitations by
integrating GEDS directly at the runtime level. By interposing WASI hostcalls inside the Wasm run-
time, legacy Wasm modules gain transparent access to hierarchical storage tiering, persistent and
shared storage, and efficient local and remote communication mechanisms (including shared mem-
ory and RDMA), without rewriting or recompiling applications. This approach preserves Wasm’s
core advantages, namely portability, isolation, and security, while overcoming key constraints such as
limited I/O expressiveness, ephemeral storage, and memory limitations. The resulting dual-runtime
architecture complements the existing C-Cells runtime, enabling the same Wasm binaries to serve
both distributed compute workflows and fine-grained, I/O-centric data transformations executed
close to storage.

Building on these foundations, Nexus generalizes the earlier GEDS–Pravega integration into a
fully programmable data management mesh for tiered stream data. Nexus decouples the data in-
gestion path from the persistency backend and exploits the chunk-level tiering boundary to execute
user-defined data management functions, or streamlets, transparently across the Cloud–Edge contin-
uum. Through the abstractions of streamlets, swarmlets, and policies, Nexus enables buffering under
storage outages, compression, semantic annotation using AI accelerators, and privacy-aware routing,
all without modifying event streaming systems or impacting real-time ingestion latency. Mesh-like,
partition-aware routing ensures consistency and scalable state management across heterogeneous
infrastructures.

Taken together, GEDS and Nexus represent the consortium’s deliverables for WP3, in line with
the description of the tasks T3.1, T3.2, and T3.3.

Page 2 of 25

HORIZON - 101092646 CloudSkin
29/12/2025 RIA

2 GEDS overview

In this section, we provide a summary of the motivation behind GEDS and an overview of the main
features developed during the whole duration of the whole project, including deliverables D3.1, D3.2,
and D3.3.

2.1 Background

The rapid evolution of cloud-native architectures, serverless computing, and cloud-edge compute
continuum has introduced a significant demand for efficient management of ephemeral data. Ephemeral
data, defined as short-lived, intermediate results, constitutes the bulk of I/O traffic in modern data-
intensive workloads, as shown in D3.1. Unlike persistent data, which requires long-term durability
and is well-served by persistent object stores like Amazon S3, ephemeral data demands extremely
high throughput and low latency, often with relaxed durability requirements as it can be recomputed
if lost.

Traditionally, ephemeral data is managed either through local file systems, which lack distributed
accessibility, or via persistent storage services, which introduce unnecessary overhead and increase
latency. High-performance systems like Apache Crail [1] pioneered the use of RDMA-based ephemeral
storage; unfortunately, they often require specialized hardware and lack the flexibility needed for
heterogeneous Cloud-Edge environments. GEDS (Generic Ephemeral Data Store) addresses these
gaps as a distributed, multi-tiered storage system designed to provide a unified, high-performance
namespace for ephemeral objects across the cloud-edge continuum.

2.2 Motivation and Problem Statement

The design of GEDS is motivated by three primary challenges in modern distributed computing:

1. I/O Bottlenecks in multi-stage workloads: In complex data-intensive pipelines, the time spent
exchanging (writing and reading) intermediate results to persistent storage often exceeds the
actual computation time.

2. Resource heterogeneity: Cloud-edge environments feature a mix of higher-end hardware and
resource-constrained edge nodes. A storage solution must scale out across these tiers without
requiring uniform specialized hardware (like RDMA-enabled networking) at every endpoint.

3. Data spillage and elasticity: While DRAM is the ideal medium for ephemeral data, it is also a
scarce and expensive resource. Systems must gracefully handle "spilling" data to slower tiers
(NVMe or S3) when memory is exhausted without interrupting application logic.

2.3 GEDS Architecture and Design

GEDS is designed as a lightweight, application-integrated storage library rather than a heavy-weight
persistent service. This "daemon-less" approach (at the data path level) minimizes context switching
and allows for zero-copy data access.

2.3.1 Multi-Tiered Storage Hierarchy

GEDS organizes storage into three distinct tiers to balance performance and cost:

• Tier 0 (Performance Tier): Implements local node DRAM or memory-mapped storage. Data
access in this tier is direct, allowing applications to read and write at memory speeds. Remote
reads are handled via a high-efficiency TCP-based protocol.

• Tier 1 (Capacity/Disaggregated Tier): Leverages local or disaggregated block storage (e.g.,
enterprise NVMes). This tier serves as an intermediate cache for data that exceeds the DRAM
capacity but is still frequently accessed.

• Tier 2 (Persistency/LTS Tier): Integrates with S3-compatible object stores for long-term storage
(LTS). GEDS can asynchronously "spill" objects to this tier based on Least Recently Used (LRU)
policies, ensuring that the performance tier remains available for hot data.

Page 3 of 25

HORIZON - 101092646 CloudSkin
29/12/2025 RIA

2.3.2 Metadata Service (MDS)

GEDS employs a centralized Metadata Service (MDS, also known as the NameNode) to manage
the global namespace. The MDS maintains information about file/object locations and replicas and
their metadata, while remaining entirely out of the data path. This separation ensures that data
transfers occur directly between the requesting application and the storage node holding the data (or
the underlying S3 store), maximizing throughput and minimizing data movement.

2.4 Key Features and Interoperability

A core strength of GEDS is its focus on "genericity," achieved through extensive language support
and standard interface integration.

2.4.1 Zero-Copy Integration

By integrating directly into application memory, GEDS allows for zero-copy operations. For instance,
in Python environments, GEDS read calls can directly allocate writable Python buffers, avoiding the
overhead of intermediate data copying between the storage library and the application space.

2.4.2 Language Bindings and APIs

• Native C++: The core GEDS engine is implemented in C++ for maximum performance and
predictability. GEDS C++ can be used and linked to any existing C/C++ application as a typical
shared library.

• Python Integration: GEDS provides a native Python API (based on PyBind11) and integrates
with the smart_open Python library, allowing data scientists and developers to use GEDS as a
drop-in replacement for standard file I/O.

• Java and Hadoop Ecosystem: GEDS provides an HDFS-compatible FileSystem interface via
Java Native Interface (JNI). This allows existing big data frameworks like Apache Spark to use
GEDS for shuffle operations and temporary data storage without code modifications.

2.4.3 Elasticity and Resilience

GEDS supports dynamic scaling of both metadata and storage resources. Its ability to transparently
relocate data to an object store allows applications to handle datasets much larger than the available
aggregate cluster memory. Also, recent integrations with tools such as Pravega demonstrate GEDS
ability to act as a high-speed buffer that tolerates transient unavailability of long-term storage (LTS)
services.

2.5 Use Cases and Performance Evaluation

Performance microbenchmarks indicate that GEDS can saturate 200Gbps network links for remote
data access, while maintaining latencies comparable to local memory access for Tier 0 operations. To
further show real-world benefits, we have validated GEDS for several critical cloud usage scenarios
and applications:

1. Apache Spark shuffle: By replacing the standard local-disk shuffle with GEDS, Spark jobs
benefit from memory-speed data exchange and reduced disk I/O contention.

2. AI/ML checkpointing: In deep learning training, GEDS enables asynchronous checkpointing at
the speed of local DRAM. An application writes a checkpoint to local Tier 0 storage (at the speed
of the combined PCIe interconnect speed of local GPUs), and GEDS handles the background
transfer to S3. This fast checkpointing allows the next training epoch to begin immediately.

3. Edge-to-cloud streaming: GEDS serves as a performance-tier buffer, absorbing high-velocity
data bursts and trickling them into persistent cloud storage as bandwidth permits.

Page 4 of 25

HORIZON - 101092646 CloudSkin
29/12/2025 RIA

2.6 Summary

GEDS represents a significant step toward a unified storage abstraction for the Cloud-Edge con-
tinuum. By focusing on the unique requirements of ephemeral data—performance, elasticity, and
multi-language support—it provides a robust foundation for next-generation AI and analytics work-
loads. As an open-source project supported by the CloudSkin framework, we have continued to
evolve GEDS, with future work focusing on advanced pub/sub synchronization and further opti-
mization of heterogeneous data paths. The GEDS codebase was open-sourced at https://github.
com/cloudskin-eu/GEDS.

Page 5 of 25

https://github.com/cloudskin-eu/GEDS
https://github.com/cloudskin-eu/GEDS

HORIZON - 101092646 CloudSkin
29/12/2025 RIA

3 GEDS-based WebAssembly Units

To address task T3.3, we designed and implemented a novel WebAssembly (Wasm) runtime tailored
to the requirements of data-intensive execution within GEDS. Specifically, this runtime overcomes
essential limitations of the current WebAssembly System Interface (WASI), such as restricted access
to high-performance storage interfaces, limited support for asynchronous and streaming I/O, and in-
adequate integration with hierarchical data-tiering mechanisms. These limitations are addressed by
introducing native, GEDS-aware I/O primitives. We call these native WebAssembly execution units
as GEDS-based WebAssembly Units.

Rather than replacing the existing C-Cells distributed runtime, this new solution complements it.
The C-Cells runtime is highly specialized for the cooperative execution of distributed, multi-process
and multi-threaded applications implemented using MPI and OpenMP standards, enabling efficient
parallel computation across cloud–edge resources. However, it is not designed to efficiently support
fine-grained I/O-centric workloads and data transformation pipelines that require deep interaction
with the storage tier.

To this end, the new runtime focuses on executing I/O-bound Wasm modules responsible for data
transformations close to storage, leveraging GEDS tiering support for efficient data placement and
movement. Integration between the C-Cells runtime and the new I/O-oriented runtime is achieved
by sharing Wasm modules across both runtimes, allowing the same portable binaries to be executed
either as part of distributed compute workflows or as standalone data transformation tasks near the
data source.

This novel dual-runtime approach enables transparent cloud–edge integration, while preserving
the advantages of Wasm, namely portability, isolation, and lightweight execution, combined with the
performance advantages of close-to-storage computation and the flexibility of the C-Cells abstraction.

In the following sections, we provide a detailed description of the GEDS WebAssembly-based
Units, including their architecture, runtime features, integration with the underlying GEDS storage
tiers, and an overview of performance results.

3.1 Background and motivation

WebAssembly and WASI. WebAssembly (Wasm) [2] is a portable binary format that offers lightweight
isolation and high performance. While originally designed as an execution environment for web
browsers, Wasm’s promise of lightweight isolation, portability, and high performance proved use-
ful far beyond the web. The introduction of Wasm standalone runtimes has sparked many new use
cases, such as serverless computing [3, 4, 5], cryptography [6, 7], and high-performance computing
[8, 9], among others. To support new use cases, and to allow the interaction of Wasm modules run-
ning in standalone runtimes with system resources (i.e., file I/O, system clocks, sockets, etc.), the
WebAssembly System Interface (WASI) [10] was introduced. The idea behind WASI is to enable
this interaction safely and maintaining the portability that characterizes Wasm [11]. For this, WASI
introduces a set of hostcalls, which roughly translate 1:1 to system calls (syscalls). On safety, these
hostcalls require special permissions (i.e., WASI capabilities) that can be given to or revoked from
Wasm modules as required. On portability, modules that are compiled to Wasm targeting WASI
do not include any hostcall implementation, but contain symbols that remain unresolved. When
running a Wasm module, the implementation is provided by the Wasm runtime. This does not tie
Wasm modules to a specific runtime, architecture or operating system. An example of this last point
is presented in Figure 1, where a simple "Hello world!" application generates an import for a WASI
hostcall, which is later resolved by the Wasm runtime.

Despite the recent advances in Wasm and WASI, their current state raises two significant chal-
lenges regarding the integration of GEDS transparently:

• Poor I/O functionality. The minimalist, POSIX-like I/O interface of WASI, which is made up of
read, write, pread and pwrite calls, greatly limits the capabilities of I/O-intensive applications.
Additionally, WASI hostcalls entail a greater level of indirection than their syscall counterparts,
as the Wasm VM must parse and translate the arguments of all hostcalls to syscalls before

Page 6 of 25

HORIZON - 101092646 CloudSkin
29/12/2025 RIA

clang --target wasm32-

wasip1 hello.c hello.wasm

hello.c

hello.wasm

Figure 1: Simple "Hello world!" application compiled to Wasm targeting WASI. hello.c utilizes
printf, which performs a write syscall. This syscall is translated as a fd_write hostcall in WASI.
The compiled code on the rightmost corner of the figure shows the unsatisfied fd_write import
symbol.

execution. Additionally, GEDS leverages RDMA for efficient data communication between
remote GEDS instances, which is unavailable in Wasm.

• Limited Wasm extensibility. Extending legacy Wasm applications is far from straightforward,
and often implies rewriting large portions of the source code, which may not always be avail-
able. This is because large parts of non-Wasm legacy applications cannot be compiled to Wasm
and WASI (e.g., system calls unavailable in WASI, limited memory management, etc.). As an
example of this, GEDS relies on memory as a means for temporary Tier Zero storage, utiliz-
ing shmem and mmap calls [12, 13] to efficiently share objects among GEDS instances collocated
in the same compute node. This approach cannot be compiled to Wasm directly and must be
rewritten to use Wasm’s basic linear memory.

• Storage ephemerality. Wasm applications often run in containerized environments [14, 15],
where local storage is ephemeral and is isolated. GEDS relies on local storage as one of the
caching layers for its Tier Zero, and is used to share data among GEDS instances in the same
node.

Given these limitations, it is natural to decouple GEDS from Wasm. For this, we explore an
integration outside Wasm. To understand the possibilities of an integration at this level, we review
two common approaches that handle this integration transparently: syscall interposition and FUSE.

Syscall interposition. System call (syscall) interposition [16] allows replacing the implementation
of system calls by interposing a custom implementation. In Linux systems, this can be achieved by
leveraging the dynamic linking and symbol resolution order to inject custom interception functions,
This is kwown as the LD_PRELOAD trick [17]. A dynamic linked binary relies on loading shared li-
braries to locate missing symbols. The dynamic linker searches for the shared libraries in the system
library paths, loads them into the process address space and tries to satisfy the missing symbols.
LD_PRELOAD allows specifying paths where alternate implementations of these libraries are stored,
and ensures the linker loads them before the libraries located in the system paths. This allows inter-
posing specific functions of the desired libraries, that is, replacing the original implementation of the
library’s functions with custom implementations.

System call interposition can be used to integrate GEDS transparently: a custom shared library
can be loaded to replace the implementation of file I/O syscalls to interact with GEDS instead of the
local storage. The integration is transparent to the Wasm modules and no recompilation is required.
However, a number of challenges also arise:

• Low portability. Syscall interposition is platform-dependent, as each platform has its own dis-
tinct mechanism for performing syscall interposition. Thus, this method would tie applications

Page 7 of 25

HORIZON - 101092646 CloudSkin
29/12/2025 RIA

K8s pod

GEDS Wasm-based unit (container)
Wasmtime

(runtime process)

Persistency
tier

Compute node

Local
storage

Tier Zero
Local

storage

Tier Zero

TCP/RDMA

Compute node

shmem

GEDS Wasm-
based unit

GEDS client

fd_write

fd_read

path_open
...
 GEDS clientGEDS file

descriptor table

Custom hostcall implementation

GEDS WASI context G
EDS Rust bindings

(C++/Rust FFI)

libgeds

Wasm

module

0101

GET, PUT

Figure 2: Architecture of GEDS-based WebAssembly Units.

that require GEDS to a specific platform, reducing portability.

• Lack of permissions. Isolated environments (e.g., cloud instances) often disallow unprivileged
users from performing syscall interposition, since buggy or malicious syscall implementations
pose serious security risks.

FUSE. Another integration alternative that we considered was based on the Filesystem in User Space
(FUSE) Linux facility. FUSE is a functionality of the Linux kernel that allows unprivileged users to
create their own file systems by executing all file system code safely in user space. Since WASI allows
mapping the host’s file system to directories visible by the Wasm module, an external durable storage
system can be mounted through FUSE and then exposed to the Wasm module. Wasm modules would
interact with the local file system through WASI calls, but all file accesses are performed against an
external storage system transparently (namely, GEDS). This approach, however, also has a significant
flaw: portability. As for the integration approach based on LD_PRELOAD, FUSE is a Linux-only facility
that lacks corresponding implementations on other platforms.

Therefore, after reviewing the existing approaches for the extension of Wasm modules inside and
outside of Wasm, we propose a middle-ground solution that addresses the limitations of both: a deep
integration of GEDS and Wasm at the runtime level (§3.2).

3.2 GEDS-Wasm integration

To materialize the integration of GEDS and WebAssembly, and to address the limitations of the alter-
natives that we have presented, we propose GEDS-based WebAssembly Units, a deep integration
between GEDS and Wasmtime that utilizes WASI hostcall interposition (see §3.2.2) to provide legacy
Wasm modules with transparent access to GEDS without rewriting nor recompiling existing appli-
cations. This integration takes place at the Wasm runtime. This approach avoids both the I/O and
extensibility limitations of Wasm with WASI, but also the portability issues introduced by potential
integrations outside of Wasm. By adding lightweight WebAssembly sandboxing near the storage
layers, GEDS-based WebAssembly Units allow for low-latency computation close to the data.

3.2.1 Integration architecture

The architecture of GEDS-based WebAssembly Units is depicted in Figure 2. From this system dia-
gram, we highlight two main components:

Runtime. The runtime is responsible for executing Wasm modules and managing the special link-
ing process of GEDS Wasm Units (i.e., performing WASI hostcall interposition, as in §3.2.2). It is
based on Wasmtime [18], an industry-standard WebAssembly runtime that supports WASI. To be
able to run GEDS Wasm Units in containerized environments (e.g., Kubernetes over containers), we
provide a containerd shim based on runwasi [19], which launches GEDS-based WebAssembly Units
in place of regular containers. We design GEDS Wasm Units to be extensible, and allow loading cus-

Page 8 of 25

HORIZON - 101092646 CloudSkin
29/12/2025 RIA

tom WASI contexts to cover other use cases that may benefit from the extension point that we have
introduced.

GEDS WASI context. The heart of the integration lies in the custom GEDS WASI context. This
special WASI context contains all the custom logic needed to interact with GEDS from the Wasm
runtime. To do so, it utilizes the libgeds shared library to create and destroy GEDS clients and
interact with GEDS’ metadata service. For maximum efficiency and proximity to the Wasm module,
this shared library is loaded together with the Wasm runtime process. To allow the interaction of
the runtime, written in Rust, with GEDS, written in C++, we provide an FFI layer written for Rust
utilizing CXX1.

With GEDS Wasm Units integrating GEDS within the runtime, we obtain the following benefits:

• Transparent storage tiering. Legacy Wasm modules gain storage tiering capabilities without 1)
rewriting large portions of the source code, 2) recompiling them, and 3) transparently, as Wasm
modules will still interact with storage as if it was the original local storage. This allows Wasm
applications to maintain hot data close in Tier Zero, and automatically offload infrequently-
utilized data to the Persistency tier, optimizing the compute node’s local storage and taking
advantage of GEDS’s in-memory storage for fast computations.

• Efficient data communication. With GEDS we allow Wasm modules to interact with each
other, even between distributed nodes, efficiently. For local communications, Wasm modules
now benefit from shared memory calls that were otherwise incompatible with Wasm, while
remote communications now leverage RDMA. This benefit could be evaluated in the future,
but is currently out of scope for this deliverable.

• Increased memory. The linear memory of Wasm legacy applications is limited to 4 GB due to
Wasm’s 32-bit memory addressing [2]. With GEDS, Wasm modules leverage its Tier Zero to
fully utilize the compute node’s memory, far beyond Wasm’s 4 GB.

3.2.2 WASI hostcall interposition

When compiling a Wasm module that targets WASI, all the symbols that reference WASI hostcalls
are left unresolved. This is meant for portability: including the hostcall implementation in the Wasm
binary would tie that binary to a specific platform. The implementation of these hostcalls is supplied
by the Wasm runtime in the form of a WASI context, a structure that contains hostcall state and
implementation. When running a Wasm module, a second compilation and linking process takes
place in the Wasm runtime, where the symbols that were purposely left unresolved are supplied by
a WASI context. By altering this linking process, we interpose custom implementations of specific
WASI hostcalls in the form of plugins.

Regarding GEDS, we leverage this hook to modify file I/O WASI hostcalls to replace the interac-
tion with local storage with GEDS. A summary of the modified WASI hostcalls is available in Table 1.
Briefly, we implement a POSIX-like file system at the Wasm runtime level with a custom table of
GEDS file descriptors, which is stored in a custom GEDS WASI context. Inside this context, we also
provide the functions that we utilize to interpose in all file and file-descriptor-related WASI hostcalls.
These functions create, operate with, and destroy GEDS file descriptors. An example of these host-
call functions is fd_write, which roughly translates to the POSIX write syscall. Listing 1 contains
the custom implementation of this hostcall to interact with either GEDS or the local filesystem, as
required.

With hostcall interposition, we provide GEDS-based WebAssembly Units the capabilities to ex-
tend legacy Wasm modules with storage tiering, persistency (storage in Wasm modules is often
ephemeral), and even communication through GEDS’ publish-subscribe mechanism transparently.
WASI hostcall interposition is transparent because it no longer requires recompiling Wasm appli-
cations to extend their I/O capabilities. Instead, we integrate custom logic at the Wasm runtime.

1https://cxx.rs

Page 9 of 25

HORIZON - 101092646 CloudSkin
29/12/2025 RIA

Table 1: List of WASI hostcalls interposed to implement GEDS-based WebAssembly Units

WASI hostcall POSIX equivalent Description
path_filestat_get stat Get attributes of file/dir at path.

path_open open
Open/create file. Creates file descriptor entry in WASI’s
file descriptor table.

fd_filestat_get fstat Get attributes of open file identified by a file descriptor.

fd_pread pread
Read data with an offset from an open file identified by
a file descriptor.

fd_write write Write data to an open file identified by a file descriptor.
path_create_directory mkdir Create directories.
path_remove_directory rmdir Remove empty directories.
fd_datasync fdatasync Synchronize file state with storage device.

fd_close close
Close a file. Removes file descriptor entry from WASI’s
file descriptor table.

path_unlink_file unlink
Delete a name and/or the file it points to at the specified
path.

Additionally, this integration is also portable, as it does not rely on an OS or architecture-specific
trick. Finally, this approach respects WASI’s security model and, even though it is still subject to
the system’s configured permissions, it allows for a certain degree of customization of the WASI
hostcalls, without requiring the extra permissions needed by syscall interposition.

Listing 1: A code snippet of the custom GEDS context that showcases the modified fd_write to allow
the interaction of the Wasm runtime with GEDS.

1 async fn fd_write(
2 &mut self,
3 mem: &mut GuestMemory<’_>,
4 fd: Fd,
5 iovs: CiovecArray,
6) −> Result<Size, Error> {
7 // Check if the file descriptor corresponds to a GEDS object
8 if self.geds_descriptors.contains_key(&u32::from(fd)) {
9 let geds_file = self.geds_descriptors.get(&u32::from(fd)).unwrap();

10 let buf = first_non_empty_ciovec(mem, iovs)?;
11 let buf = mem.to_vec(buf)?;
12

13 // Write to GEDS
14 return match geds_file.write(&buf, 0, buf.len()) {
15 Ok(()) => Ok(u32::try_from(buf.len())?),
16 Err(_) => {
17 Err(Errno::Fault.into())
18 }
19 };
20 }
21 // Fallback to original WASI context for non−GEDS files (i.e, local filesystem)
22 self.inner.fd_write(mem, fd, iovs).await
23 }

3.3 Evaluation

The evaluation of GEDS Wasm Units consists of two sets of experiments. Firstly, we carry out a series
of performance micro-benchmarks to characterize the performance of GEDS Wasm Units (§3.3.1).
Secondly, in §3.3.2, we compare the data persistency performance of GEDS-based WebAssembly
Units with the alternatives presented in §3.1. Since an integration of GEDS within Wasm is not feasi-
ble, we abstain from evaluating this particular setup.
Experimental setup. The lightweight nature of GEDS Wasm Units allows for executing a high num-

Page 10 of 25

HORIZON - 101092646 CloudSkin
29/12/2025 RIA

fd_datasync fd_pread fd_pwrite fd_read fd_write

1

10

100

1000

D
u
ra

ti
o
n
 (

µ
s
)

WASI

Custom WASI

Figure 3: WASI hostcall duration with unmodified WASI against hostcall interposition with a custom
NOOP WASI context.

ber of Wasm modules on a single node. For this reason, all experiments have been executed on a
single compute node with 16 GB of RAM and 8 CPU cores, running Ubuntu Server 24.10. For GEDS’
Tier Zero storage, compute nodes have been provisioned with solid-state storage drives, while the
Persistency tier is supported by a MinIO instance located at KIO Networks’ facilities. Wasm modules
are packaged as OCI-compliant lightweight images and executed in Kubernetes as Wasm containers
utilizing a runwasi containerd shim [19].
Legacy Wasm applications. As a legacy Wasm application for our experiments, we utilize an ex-
isting, pre-compiled Wasm module that performs the image pre-processing tasks of Metaspace’s
metabolomics pipeline. This application originally retrieves images from local storage (i.e., disk),
rescales and normalizes them, and writes them back to local storage. With GEDS Wasm Units, we
replace the write logic to integrate with GEDS and data encryption transparently.
Competing systems. For experiments where comparisons apply, we compare GEDS Wasm Units
with two competing systems: s3fs and a custom GEDS integration through syscall interposition.
The former is a FUSE implementation that mounts an S3 or S3-compatible (e.g., MinIO) bucket as a
file system that can be exposed to Wasm modules transparently. The latter is a custom system call
interposition implementation that leverages the LD_PRELOAD trick to replace the required system calls
to interact with GEDS instead of local storage.

3.3.1 Performance microbenchmarks

Hostcall interposition. To implement GEDS Wasm Units, we interpose in the I/O path. For this
reason, we must ensure that this interposition imposes no significant overhead on host calls, as I/O-
intensive applications rely heavily on these functions. To do so, we run a microbenchmark in which
we execute a Wasm module that performs all basic file I/O operations. We compare the latency of
each I/O operation between an unmodified Wasm runtime and our custom runtime with a WASI
context that bypasses the hostcall to the original implementation (NOOP). The results in Figure 3
show that hostcall interposition does not introduce a significant penalty, as the times for all hostcalls
remain practically the same.

Disk and network performance. Using the Metaspace legacy Wasm application, we run a mi-
crobenchmark to characterize the I/O usage (disk and network) of GEDS Wasm Units under load.
For this, we run multiple collocated units (modules) in the same node (ranging from 10 to 100) and
measure their CPU usage, network upload throughput, and disk read/write throughput. Each mod-
ule processes a fixed number of images, and thus, increasing the number of modules increases the
total number of processed images. The number of GB processed for 10, 25, 50 and 100 units is 2.9,
7.2, 14.3, and 29.7, respectively. Figure 4 portrays the results of this experiment. The first insight
is that modules first load the images, as indicated by the small disk read spike at the beginning
of the job, and, as modules finish execution, the results are written to GEDS’s Tier Zero (disk write
spikes), and finally offloaded to S3 in the background (shown by the increase in network throughput).
With the provisioned disk and network interface, Wasm Units achieve a peak network throughput
of 220 MB/s and a disk write throughput of 205 MB/s for 100 modules. As we increase the number

Page 11 of 25

HORIZON - 101092646 CloudSkin

29/12/2025 RIA

0

20

40

60

80

100

C
P

U
 u

s
a
g
e
 (

%
)

10 modules

0

50

100

150

200

N
e
tw

o
rk

 u
p
lo

a
d

th
o
ru

g
h
p
u
t
(M

B
/s

)

0 2.5 5 7.5 10

Time (s)

0

50

100

150

200

D
is

k
 t
h
ro

u
g
h
p
u
t

(M
B

/s
)

Read
Write

25 modules

0 5 10 15 20

Time (s)

50 modules

0 10 20 30 40

Time (s)

100 modules

0 15 30 45 60

Time (s)

Figure 4: I/O performance microbenchmark of GEDS-based Wasm Units. Each column presents the
result for a number of collocated Wasm modules (GEDS Wasm Units) in the same node. X axis shows
time in seconds.

of Units, the time to process the images also increases, due to the Wasm modules competing for CPU
and I/O resources.

3.3.2 Data migration in GEDS-based WebAssembly Units and external alternatives

To provide a comparison of GEDS Wasm Units with the competing alternatives, we carry out an
experiment that compares GEDS’ persistency tier performance with an S3-based FUSE (s3fs), and
syscall interposition that replaces file I/O syscalls with S3 PUT and GET operations. To do so, we
leverage the Metaspace legacy Wasm application with data encryption disabled, and run it on a
single GEDS Wasm Unit for each of the three competing systems. The results are presented in Table 2,
showing the number of images processed per second.

The S3 FUSE is the slowest of the three alternatives, with an average throughput of 7.60 images/s.
This is due to the extra level of indirection that FUSE introduces (interaction with libfuse). By per-
forming syscall interposition, we obtain a moderate speedup of 1.12× over FUSE, which falls short to
GEDS Wasm Units, that achieve a throughput of 10.98 images/s and a speedup of 1.44× over FUSE.
This is because even though syscall interposition eliminates the extra indirection of FUSE, it is still
located further away from the module in comparison with GEDS Wasm Units. GEDS Wasm Units,
on the other hand, are located in the same Wasm runtime process, before hostcalls are translated to
syscalls, which gives a certain advantage over the presented alternatives.

The takeaway is that carrying out a deep integration of GEDS at the Wasm runtime process not
only provides the benefits presented in §3.2.1, namely improved portability and security, over the
explored alternatives, but also improves performance when migrating data to a persistent storage
system. This result provides further evidence that the best-suited place for the GEDS-Wasm integra-

Page 12 of 25

HORIZON - 101092646 CloudSkin
29/12/2025 RIA

Table 2: Average persistent storage data offloading throughput (in images/s) of syscall interposition,
s3fs and GEDS Wasm Units.

Setup X (images/s) σ Speedup
s3fs (FUSE) 7.60 0.68 1.00×
Syscall interposition (LD_PRELOAD) 8.52 0.81 1.12×
GEDS-based WebAssembly Units 10.98 0.42 1.44×

tion is at the Wasm runtime.

3.4 Summary

We have introduced GEDS-based WebAssembly Units, a new compute abstraction for CloudSkin that
combines Wasm’s lightweight isolation, portability and high performance, with GEDS’ data tiering
and automated data migration to persistent storage. This deep integration, which takes place at the
Wasm runtime process, aims to provide existing I/O intensive Wasm applications with transparent
access to these features. GEDS Wasm Units are designed to be used alongside other compute ab-
stractions of the project, such as C-Cells, and is especially focused at fine-grained, I/O-focused tasks
such as image pre-processing. We have presented its architecture and provided a comparison with
two viable alternatives outside of Wasm. Throughout the experimental evaluation, we have proved
that an integration at the Wasm runtime improves the data migration performance up to 44% over
its alternatives, while providing a series of operational benefits, such as improved portability and se-
curity. We have also characterized GEDS Wasm Units’ disk and network utilization through a legacy
Wasm application, and have determined that WASI hostcall interposition introduces no significant
overhead, which is critical when interposing in the I/O path of I/O-intensive applications.

Page 13 of 25

HORIZON - 101092646 CloudSkin
29/12/2025 RIA

4 Nexus: Programmable Data Management across the Cloud-Edge Continuum

In the first half of the CloudSkin project (see D3.3), we have integrated Pravega with the Generic
Ephemeral Data Store (GEDS) to address a pressing operational risk in the compute continuum:
under network unreliability, the streaming storage tiering pipeline in Pravega could stall long-term
offloading and eventually throttle ingestion. This was not acceptable in critical use cases like NCT,
where Pravega is used as the streaming storage substrate to ingest and manage endoscopic video
as data streams. By integrating an intermediate buffering layer at the Edge, GEDS masked Pravega
disconnections from long-term storage and allowed the video ingestion path to remain functional
until connectivity was restored. This practical enhancement demonstrated that a small, well-placed
data service can materially improve end-to-end reliability in Edge/Cloud deployments (see Fig. 5).

Figure 5: The Pravega and GEDS integration introduced in D3.3.

4.1 Motivation

However, as part of this integration work, we realized that the streaming data tiering path from Edge to
Core/Cloud remains under-exploited. Today’s tiering mechanisms in event streaming systems—including
Pravega—move cold data chunks from the write-ahead log (WAL) to long-term storage via simple
bindings executing write and read operations. In use cases like NCT, this is a missed opportunity: as
endoscopic video streams transition from real-time ingestion to long-term retention, we could deploy
custom in-transit functions for adding value to the stream tiering process across the Cloud-Edge. For
example, such functions could (i) buffer data during outages to preserve continuous endoscopic video
ingestion, (ii) annotate video chunks with semantic tags to accelerate clinical retrieval and research,
(iii) compress or encrypt the data to reduce cost or enforce privacy, and (iv) route content to specialized
Edge/Cloud stores, all these defined via policies. Because stream data tiering operates offline at the
chunk granularity (1MB to hundreds of MBs), these operations can be performed without impacting
video ingestion latency at the event granularity where surgeons require strict real-time guarantees
(e.g., > 30FPS, sub-10ms write latency). In short, the stream tiering boundary is an ideal enforcement
point for advanced, policy-driven data management across the Cloud–Edge continuum. This insight
led us to an improved design, Nexus, a data management mesh that transparently intercepts tiering
operations and executes programmable streamlets (i.e., in-line data management functions) across the
Cloud-Edge. This new system is envisioned to enable the computational storage functionality, as

1The content of this section maps to tasks T3.1 and T3.2 and is related to the paper “Nexus: A Data Management Mesh for
Tiered Data Streams”, submitted for publication.

Page 14 of 25

HORIZON - 101092646 CloudSkin
29/12/2025 RIA

Figure 6: Architecture overview and operation of Nexus.

envisioned in T3.2.

4.2 Nexus in a Nutshell

Nexus bridges the gap between event streaming systems and external storage by enabling transparent,
extensible, and location-aware data management on tiered stream data chunks, without impacting the hot
streaming ingestion path. For NCT, the goal is to keep real-time AI inference stable at the edge, while
enriching and operating on data as it moves to the Cloud Core.

Design principles Nexus is built on three main principles: (i) decoupling stream processing from
data management—stream events at millisecond timescales vs. tiered chunks at second/minute
scales; (ii) transparency via object-storage API interception (e.g., S3-compatible), so any streaming
system (such as Kafka, Pulsar, Pravega) can be supported without changes; and (iii) extensibility and
heterogeneity, allowing user-defined functions (streamlets) to run at specific locations (Edge, Cloud)
and on required hardware (GPU, TEE), orchestrated by policies. Returning to the NCT use case, this
means placing buffering functions at the edge close to operating rooms, and scheduling AI-powered
annotation streamlets on GPU nodes in the hospital IT center.

Abstractions Nexus builds on three abstractions that enable programmable data management across
the Cloud–Edge continuum: streamlets, swarmlets, and policies. Streamlets are lightweight, user-
defined functions executed inline on tiered stream data chunks during storage operations, allowing
transformations such as compression or encryption, performance optimizations like caching, seman-
tic enrichment through AI-based annotation, or routing decisions for privacy and compliance. Unlike
event-level processing, streamlets operate at chunk granularity (megabytes), making them ideal for
tasks that do not belong in the hot ingestion path. Swarmlets group Nexus worker instances into clus-
ters associated with a specific infrastructure domain (Edge or Cloud) and hardware profile (e.g., GPU
for AI inference, TEE for confidential execution), exposing a standard object-storage API endpoint so
streaming systems can tier data transparently. Finally, policies orchestrate streamlet pipelines by
defining which functions to apply, in what order, and where they should run, including hardware
constraints and output destinations.

Architecture Nexus operates as a middleware layer that transparently intercepts tiered storage op-
erations from event streaming systems and applies policy-driven streamlet pipelines across Edge and
Cloud (see Fig. 6). Its architecture consists of containerized worker instances grouped into swarmlets,
each associated with a specific location (e.g., operating room edge cluster or hospital IT center) and
hardware profile (GPU for AI inference, TEE for confidential execution). Swarmlets expose standard
object-storage APIs (such as S3-compatible endpoints), allowing streaming systems like Pravega to

Page 15 of 25

HORIZON - 101092646 CloudSkin
29/12/2025 RIA

offload chunks transparently. When a storage tiering request arrives, Nexus intercepts it and ex-
ecutes the configured streamlet pipeline inline – transforming, annotating, or routing the data as
required – before acknowledging completion to preserve durability guarantees. Policies define the
composition and placement of streamlets, enabling multi-stage workflows such as buffering at the
edge, semantic annotation on GPU nodes in the cloud, and final storage in a compliance-approved
bucket. To enforce these policies efficiently, Nexus implements mesh-like data routing: requests
can hop across swarmlets based on location and hardware constraints, while partition-aware rout-
ing ensures that stateful streamlets (e.g., annotation maintaining per-partition indexes) process data
consistently without global locks. Metadata for swarmlets, streamlets, and policies is maintained lo-
cally with lightweight synchronization for cross-location updates, and integrity is preserved through
checksum recalculation for transformer streamlets.

Streamlet state. While many streamlets are stateless, advanced data management often requires
maintaining persistent state across executions – for example, tracking which chunks have been anno-
tated or routed to specific storage tiers. Nexus supports this through lightweight state primitives and
partition-aware routing. Each streamlet can store key–value pairs as object tags or mark data struc-
tures as @persistent, which Nexus automatically saves in the metadata backend. To avoid costly
global synchronization, Nexus exploits the sequential and partitioned nature of streams: all chunks
from the same partition are routed to the same streamlet instance, ensuring that updates occur in
order and eliminating contention on shared metadata. This design reduces metadata read ampli-
fication, while guaranteeing that stateful operations such as semantic annotation or privacy-aware
routing execute consistently.

Mesh-like data routing. To enforce pipelines across heterogeneous infrastructures, Nexus imple-
ments mesh-like data routing that transparently forwards tiering requests between swarmlets while
preserving consistency and performance. When a streaming system offloads a chunk to Nexus, the
request first reaches the swarmlet exposed as the tiering endpoint; from there, Nexus may route it
to other swarmlets based on policy requirements such as location (Edge vs. Cloud) and hardware
constraints (GPU for AI annotation, TEE for confidential execution). Routing decisions also consider
partition affinity: all chunks from the same stream partition are deterministically mapped to the same
worker instance using consistent hashing, ensuring that stateful streamlets maintain a coherent view
of their local state without global locks. This approach minimizes metadata contention and reduces
read amplification. Despite involving multiple hops, Nexus preserves transparency for the stream-
ing system and guarantees end-to-end durability by acknowledging requests only after the entire
pipeline completes successfully.

4.3 Nexus in Action

This section presents Nexus from a developer’s perspective and demonstrates how its programma-
bility is applied to the NCT surgery use case. Developers extend Nexus by implementing stream-
lets that process stream data chunks. Nexus supports two streamlet types: ByteStreamlet and
EventStreamlet (see Table 3).

A ByteStreamlet allows developers to process raw byte streams during PUT and GET operations
by implementing the methods processPutBytes and processGetBytes. These streamlets are suitable
for functionality such as compression or encryption. Nexus invokes these methods in-line during
storage operations, ensuring that transformations are applied before data is durably stored.

For streamlets like caching or buffering, developers can also implement the DataSourceStreamlet
interface. This interface extends the byte-based model by allowing streamlets to intercept the data
source before a GET operation via the handlePreGet method. This enables streamlets to pre-load
content from alternative sources or serve cached data directly.

The EventStreamlet<T> API allows developers to process deserialized records from stream data
chunks. These streamlets are ideal for semantic processing tasks, such as AI-based inference or
content-based annotation. Developers must provide a Deserializer<T> implementation to convert
the input stream into typed records. The streamlet then defines processPutRecord and processGetRecord

Page 16 of 25

HORIZON - 101092646 CloudSkin
29/12/2025 RIA

Figure 7: Surgiomics challenges addressed with Nexus.

to handle each record individually. Importantly, event streamlets cannot modify the request content
to preserve data integrity.

Both ByteStreamlet and EventStreamlet can maintain persistent state across executions by an-
notating data structures with a @Persistent tag. Nexus automatically stores and retrieves these struc-
tures using the system metadata backend at hand.

Table 3: Summary of Nexus Streamlet APIs (developer-facing).

API Purpose (examples) Key methods
ByteStreamlet Raw-byte processing at tiering boundary. Examples:

compression (GZip), encryption, format conversion.
processPutBytes,
processGetBytes

DataSourceStreamlet Intercept/serve the data source on GET. Examples:
buffering under outages, prefetching, cache redirect.

handlePreGet

EventStreamlet<T> Record-level processing after deserialization.
Examples: AI-driven annotation, content filter-
ing, semantic indexing.

processPutRecord,
processGetRecord

Deserializer<T> Convert chunk bytes into typed records. Examples:
JPEG frames, FASTQ reads.

deserializeChunk

@Persistent Annotate state to persist across executions. Examples:
per-partition indexes, routing maps.

(annotation on data struc-
tures)

We created a Nexus pipeline for NCT as visible in Fig. 7. The goal is twofold: i) create a data
buffering streamlet to provide similar fault-tolerance capabilities to Pravega as the integration with
GEDS, ii) demonstrate AI-powered streamlets by annotating data objects based on content using
NCT models. Next, we describe the development of these two streamlets:

Buffering under storage unavailability. Computer-assisted surgery is an increasingly impor-
tant domain for improving the success of surgical procedures. To store multimedia in a streaming
fashion and perform real-time analytics, NCT is using Pravega streams to ingest video and image
data. Unfortunately, Pravega exhibits limitations upon unavailability of long-term storage. It can
only continue ingesting events until its in-memory cache is full of data waiting to be offloaded [20].
During a surgery, this may imply that video ingestion and data analytics are impacted in case of
minor transient network outages, which is not acceptable. To address external storage unavailability,
we implemented a byte streamlet that durably buffers incoming data chunks. This allows Pravega
to continue ingesting data uninterrupted. The streamlet implements the DataSourceStreamlet API,
serving data from local storage or redirecting GET requests to the object store as needed.

Semantic stream data annotations. To help NCT scientists locate relevant fragments of video/im-
age streams, some type of semantic indexing is needed. Hence, we developed an EventStreamlet
that integrates NCT AI models and leverages a custom Deserializer to extract JPEG images from
Pravega stream chunks. Upon processing all or a subset of images within a chunk, the streamlet
annotates the corresponding data object with semantic tags (e.g., surgical phase, instruments). This
metadata facilitates efficient retrieval of stream fragments containing relevant visual content.

The use-case evaluation of these streamlets can be seen in D5.4. In what follows, we provide a
general evaluation of Nexus via experiments and benchmarks.

Page 17 of 25

HORIZON - 101092646 CloudSkin
29/12/2025 RIA

4.4 Validation

The evaluation of Nexus focuses on the following questions:

• Can Nexus provide high performance storage request interception and routing (§4.4.2)?

• What benefits may Nexus transparently bring to existing event streaming systems (§4.4.3)?

4.4.1 Setup

Implementation We have implemented Nexus as a middleware for the S3Proxy project [21], an
extensible S3-compatible proxy. The middleware intercepts S3 requests and processes them based
on system metadata (e.g., swarmlets, streamlets, and policies). From the client’s perspective, Nexus
behaves like a standard S3 interface: the client receives a response only if the request is successfully
stored or fails. Internally, however, Nexus uses asynchronous programming to concurrently process
requests in a streaming fashion. The implementation spans over 7K lines of Java code, including a
CLI for managing metadata and scripts for deployment and benchmarking. Redis [22] serves as the
metadata backend, with local caching for read-only access. Upon updates (e.g., new policies), Redis
notifies the Nexus metadata service to apply changes. Nexus also supports dynamic compilation and
runtime loading of streamlets and deserializers. The code is available at [23].

Cluster settings. We deploy Nexus in two Kubernetes-based environments. On AWS, we create
an EKS cluster on top of 3 i3en.2xlarge instances, each with 8vCPUs, 64GB of memory, and 2 local
NVMe drives to deploy all instances (Nexus workers, Redis, and benchmarks). We use AWS S3
for long-term storage. Our lab cluster is composed of 7 VMs running Kubernetes. Each VM has 8
CPUs, 20GB of memory, and 80GB of storage (1 master, 6 workers). One VM has a GPU available for
running AI-related streamlets (Nvidia A16 with 16GB VRAM). In our experiments, Edge and Cloud
are logical regions for swarmlets within the same infrastructure.

Baselines. We exercise Nexus via 3 streaming systems:
Apache Kafka: Apache Kafka [24, 25] is a distributed event streaming platform optimized for high-

throughput, low-latency data processing via a publish-subscribe model. It structures data into topics,
partitions, and offsets, ensuring scalability and fault tolerance through replication. For tiered storage,
introduced in KPI-405 [26], we use Aiven’s Kafka storage tiering plugin [27].

Apache Pulsar: Apache Pulsar [28] is a scalable, low-latency event streaming system. Its tiered
storage offloads sealed log segments from high-performance storage (e.g., BookKeeper [29, 30]) to
cost-efficient long-term storage, reducing costs while preserving seamless access to historical data.

CNCF Pravega: Pravega [31, 20] is a distributed stream storage system for unbounded, high-
throughput data. Pravega streams support dynamic scaling, exactly-once semantics, and long-term
retention. Its tiered storage integrates low-latency short-term storage via Apache BookKeeper with
cost-efficient long-term storage like cloud object stores.

Benchmarks. To generate workloads in our experiments, we resort to the following benchmarks:
FIO: FIO [32] is a powerful benchmarking tool used to evaluate the performance of storage sys-

tems, including object storage services. It supports various workload types such as sequential and
random read/write operations, mixed I/O patterns, and custom workloads. FIO allows users to
configure parameters like block size, I/O depth, and number of jobs, and it supports multiple I/O
engines (e.g., libaio).

OpenMessaging Benchmark: OpenMessaging Benchmark [33] is a comprehensive toolset designed
for benchmarking messaging systems in the cloud. It supports systems like Apache Kafka, Apache
Pulsar, Pravega, and more.

Datasets. We used the following datasets for building stream data payloads in our experiments2:
i) Data compression: For data compression experiments, we used traces from HDFS from a collection
of system logs available at [34, 35]. ii) Semantic data routing: For image payloads, we used images from
ImageNet [36] and Cholec80 [37]. iii) Genomic data: For the genomics data management experiment,
we use FASTQ files available from SRA Toolkit [38].

2We extended OpenMessaging Benchmark to load custom payloads.

Page 18 of 25

HORIZON - 101092646 CloudSkin
29/12/2025 RIA

1 2 4 8

Number of Threads

0

20

40

60

80

100

T
h
ro

u
g
h
p
u
t
(M

B
p
s
)

FIO Benchmark (r/w) - Object Size 1MB

S3
Nexus (no streamlets)
Nexus (NOOP streamlet)

1 2 4 8

Number of Threads

0

50

100

150

200

250

300

350

T
h
ro

u
g
h
p
u
t
(M

B
p
s
)

FIO Benchmark (r/w) - Object Size 10MB

S3
Nexus (no streamlets)
Nexus (NOOP streamlet)

1 2 4 8

Number of Threads

0

50

100

150

200

250

300

350

T
h
ro

u
g
h
p
u
t
(M

B
p
s
)

FIO Benchmark (r/w) - Object Size 100MB

S3
Nexus (no streamlets)
Nexus (NOOP streamlet)

1 2 4 8

Number of Threads

0

200

400

600

800

1000

T
h
ro

u
g
h
p
u
t
(M

B
p
s
)

FIO Benchmark (r/w) - Object Size 1000MB

S3
Nexus (no streamlets)
Nexus (NOOP streamlet)

Figure 8: Interception performance of 1 Nexus instance under FIO read/write workloads on AWS.

1 2 4 8

Number of Threads

0

20

40

60

80

100

T
h

ro
u

g
h

p
u

t
(M

B
p

s
)

FIO Benchmark (r/w) - Object Size 1MB

Nexus (NOOP streamlet)
Nexus (NOOP streamlet + tags)

1 2 4 8

Number of Threads

0

50

100

150

200

250

300

350

T
h

ro
u

g
h

p
u

t
(M

B
p

s
)

FIO Benchmark (r/w) - Object Size 10MB

Nexus (NOOP streamlet)
Nexus (NOOP streamlet + tags)

Figure 9: Performance impact of leveraging object tags using 1 Nexus instance under FIO read/write
workloads on AWS.

4.4.2 Interception Performance

First, we evaluate Nexus in isolation via FIO to understand its interception and routing performance
on AWS.

IO interception performance. We execute a read/write workload of objects against S3 via FIO
as a performance baseline. Then, we reproduce the same workload when a single Nexus worker
intercepts storage request without processing and when it executes a no-op streamlet. Fig. 8 shows
the results for various levels of benchmark parallelism and object sizes.

First, the main observation in Fig. 8 is that Nexus does not induce a significant performance
penalty when intercepting object storage requests. In most cases, the throughput reduction that FIO
reports when Nexus intercepts requests falls below 5%. Nexus worst performance cases compared
to the baseline seem to be for one benchmark thread and extreme object sizes (1MB and 1000MB).
A possible explanation may be that Nexus performs metadata checks during the hot path that incur
additional latency, whose impact is more pronounced for low parallelism rates. We also observe that
throughput variability in Nexus is generally lower compared to FIO performing IO directly to S3. This
may be due to the server buffering configurations for optimizing HTTP connections in Nexus. Over-
all, a single Nexus instance can execute a no-op streamlet from multiple client requests at ≈ 730MBps,
demonstrating the feasibility of the current implementation.

Object metadata. Nexus exploits object metadata to allow streamlets annotating objects, as well as
to store specific system information (e.g., if the object was processed by a transformer streamlet). To
inspect the impact of using object tags, Fig. 9 shows the throughput comparison of a no-op streamlet
versus a no-op streamlet that stores and retrieves an object tag for PUTs and GETs, respectively.

Fig. 9 shows that the throughput reduction related to managing object tags is generally minor.
Specifically, the worst-case throughput reduction observed is 2.7% and 3.2% for 1MB and 10MB ob-
jects, respectively. A key reason for minimizing the performance impact of managing object tags
is that these are asynchronous operations. For instance, upon an object PUT, object tags are stored
asynchronously once the actual object has been correctly stored, thus not blocking the original re-
quest. This experiment demonstrates that Nexus can effectively manage object metadata, which can
be leveraged for both system and user purposes.

Page 19 of 25

HORIZON - 101092646 CloudSkin
29/12/2025 RIA

1 2 4 8

Number of Threads

0

10

20

30

40

50

60

T
h

ro
u

g
h

p
u

t
(M

B
p

s
)

FIO Benchmark (w) - Object Size 1MB

Nexus 1 NOOP Streamlet
Nexus 2 NOOP Streamlets
Nexus 3 NOOP Streamlets

1 2 4 8

Number of Threads

0

100

200

300

400

500

600

T
h

ro
u

g
h

p
u

t
(M

B
p

s
)

FIO Benchmark (w) - Object Size 100MB

Nexus 1 NOOP Streamlet
Nexus 2 NOOP Streamlets
Nexus 3 NOOP Streamlets

Figure 10: Processing performance depending on pipeline size of 1 Nexus instance under FIO write
workloads on AWS.

1 2 4 8

Number of Threads

0

50

100

150

200

250

300

350

T
h

ro
u

g
h

p
u

t
(M

B
p

s
)

FIO Benchmark (w) - Object Size 10MB

Nexus NOOP streamlet (1 hop)
Nexus NOOP streamlet (2 hops)
Nexus NOOP streamlet (3 hops)

1 2 4 8

Number of Threads

0

100

200

300

400

500

600

T
h

ro
u

g
h

p
u

t
(M

B
p

s
)

FIO Benchmark (w) - Object Size 100MB

Nexus NOOP streamlet (1 hop)
Nexus NOOP streamlet (2 hops)
Nexus NOOP streamlet (3 hops)

Figure 11: Performance impact of data routing hops under FIO write workloads on AWS.

Streamlet pipelining overhead. Next, we evaluate the performance of Nexus intercepting object
storage requests with a different number of pipelined functions in the same worker instance. To this
end, we create policies pipelining up to 3 no-op streamlets for PUT requests (see Fig. 10).

Fig. 10 shows that Nexus can successfully pipeline multiple functions as a chain. Visibly, each
additional no-op streamlet can induce an additional 1% to 6% of throughput reduction, depending
on the case. In line with prior observations, the 3-streamlet case with the lowest levels of parallelism
exhibits the most pronounced performance drop compared to the baseline (up to 6.8%). Overall, this
experiment demonstrates the practicality of building complex streamlet pipelines in Nexus.

Data routing overhead. Nexus can route object requests transparently to event streaming systems
based on the policies and streamlets configured. We evaluate the performance impact of executing
no-op streamlets across 1 to 3 Nexus worker instances (see Fig. 11).

In the more typical 2-hop pipeline scenario (e.g., Cloud-Edge deployments), Fig. 11 shows that
the throughput reductions due to routing across swarmlets ranges from 6.2% to 14.8%, depending
on object size and benchmark parallelism. We also assess a more demanding 3-hop configuration in
Nexus. In this case, we observe a higher performance penalty, with throughput reductions reaching
up to 25.6%, particularly for larger objects. Despite the added routing complexity, these results con-
firm that Nexus maintains acceptable performance levels and preserves transparency from the event
streaming system’s perspective, which is a key design goal.

4.4.3 Enhancing Event Streaming Systems

Next, we focus on illustrating the advantages that Nexus provides to event streaming systems in our
on-premises cluster.

Infrastructure abstraction. We perform two experiments in this section: data compression and se-
mantic data routing (see Fig. 12). For the first experiment, we deploy two Nexus swarmlets logically as-
sociated to Edge and Cloud regions, where data compression takes place at the Edge. For the second
experiment, simulating a more realistic use-case, the Edge cluster is expanded with GPU-enabled
nodes. Then, we create a new swarmlet in the Edge region and implement a semantic data rout-

Page 20 of 25

HORIZON - 101092646 CloudSkin
29/12/2025 RIA

Figure 12: Experiment setup showing Nexus capabilities to abstract infrastructure from event stream-
ing systems.

Data	compression	ratio
0 2 4 6 8 10 12

Av
g.
	p
95
	w
rit
e	
la
te
nc
y	
(m
s)

0

2

4

6

8

10

12
Write	latency	vs	compression	ratio	(Kafka)

Uncompressed	(100e/s)
Uncompressed	(1000e/s)
Client	(100e/s)
Client	(1000e/s)
Broker	(100e/s)
Broker	(1000e/s)
Tiered	Storage	-	Broker	(100e/s)
Tiered	Storage	-	Broker	(1000e/s)
Nexus	(100e/s)
Nexus	(1000e/s)

Batch	size=[5ms,5KB]

Data	compression	ratio
0 2 4 6 8 10 12

Av
g.
	p
95
	w
rit
e	
la
te
nc
y	
(m
s)

80

85

90

95

100

105

110
Write	latency	vs	compression	ratio	(Kafka)

Uncompressed	(100e/s)
Uncompressed	(1000e/s)
Client	(100e/s)
Client	(1000e/s)
Broker	(100e/s)
Broker	(1000e/s)
Tiered	Storage	-	Broker	(100e/s)
Tiered	Storage	-	Broker	(1000e/s)
Nexus	(100e/s)
Nexus	(1000e/s)

Batch	size=[100ms,100KB]

Data	compression	ratio
0 2 4 6 8 10 12

Av
g.
	p
95
	w
rit
e	
la
te
nc
y	
(m
s)

0

2

4

6

8

10

12
Write	latency	vs	compression	ratio	(Pulsar)

Uncompressed	(100e/s)
Uncompressed	(1000e/s)
Client	(100e/s)
Client	(1000e/s)
Nexus	(100e/s)
Nexus	(1000e/s)

Batch	size=[5ms,5KB]

Data	compression	ratio
0 2 4 6 8 10 12

Av
g.
	p
95
	w
rit
e	
la
te
nc
y	
(m
s)

80

85

90

95

100

105

110
Write	latency	vs	compression	ratio	(Pulsar)

Uncompressed	(100e/s)
Uncompressed	(1000e/s)
Client	(100e/s)
Client	(1000e/s)
Nexus	(100e/s)
Nexus	(1000e/s)

Batch	size=[100ms,100KB]

Data	compression	ratio
0 2 4 6 8 10 12

Av
g.
	p
95
	w
rit
e	
la
te
nc
y	
(m
s)

0

0.5

1

1.5

2

2.5

3

3.5

4
Write	latency	vs	compression	ratio	(Pravega)

Uncompressed	(100e/s)
Uncompressed	(1000e/s)
Nexus	(100e/s)
Nexus	(1000e/s)

Figure 13: Data compression vs write latency of event streaming systems data compression and
Nexus.

ing streamlet pipeline that requires GPU acceleration. The crucial insight is that such infrastructure
expansion is transparent to the event streaming system, as Nexus re-routes storage requests across
swarmlets based on hardware requirements. Therefore, Nexus allows administrators to manage the
infrastructure and policies without requiring changing the (limited) tiered storage configuration of
event streaming systems.

Transparent data compression. First, we focus on data compression. We implemented a trans-
former streamlet: GZip data compression (s1). We set event streaming systems to offload data to
Nexus swarmlet 1 in our on-premises cluster and configured Nexus against a MinIO bucket. We
compare the impact of data compression on the event streaming systems built-in mechanisms (if
any) in terms of latency and compression ratio for Kafka, Pulsar, and Pravega.

Fig. 13 shows how different compression models —client-side, broker-side, tiered storage (bro-
ker), and Nexus— affect compression ratio and write latency across event streaming systems. Nexus
achieves the highest compression ratios (e.g., up to 10.4× in Pravega, 9.9× in Kafka, and 8.3× in Pul-
sar), while maintaining low write latencies (similar to compressing data at the tiered storage module
in the Kafka broker). Nexus achieves compression ratios of up to 3.9× higher than the best client-
or broker-side compression in Kafka, and over 3.8× higher in Pulsar (Pravega has no compression
implemented).

Interestingly, in Kafka and Pulsar, which use user-defined batching strategies (e.g., fixed batch
time and size), we observe that larger batch sizes and higher producer rates generally improve com-
pression ratios by leading to larger event batches. For instance, in Kafka, increasing the batch size
from 5ms/5kb to 100ms/100kb at 100e/s improves the compression ratio from 2.84× to 7.75× with
client-side compression. However, this improvement comes at the cost of increasing the 95th per-

Page 21 of 25

HORIZON - 101092646 CloudSkin
29/12/2025 RIA

Privacy-aware	data	routing	(1MB	chunks)

Time	(s)
0 10 20 30 40 50 60 70 80 90 10

0
11
0

0

2

4

6

8

10

C
hu
nk
	S
iz
e	
(b
yt
es
)

#105

Private	bucket Non-private	bucket

Privacy-aware	data	routing	(2MB	chunks)

Time	(s)
0 10 20 30 40 50 60 70 80 90 10

0
11
0

0

0.5

1

1.5

2

2.5

C
hu
nk
	S
iz
e	
(b
yt
es
)

#106

Private	bucket Non-private	bucket

Time	(s)
0 0.1 0.2 0.3 0.4 0.5 0.6

C
D
F

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Privacy-aware	routing	PUT	times	(inference	+	IO)

1MB	chunks	(sampling=100%)
1MB	chunks	(sampling=50%)
2MB	chunks	(sampling=100%)
2MB	chunks	(sampling=50%)

Figure 14: Storage bucket for stream data chunks decided by the semantic streamlet (left) and infer-
ence times based on chunk size and event sampling rate (right).

centile write latency by ≈ 15×. These results show that Nexus enables transparent data compression
across diverse event streaming systems, without impacting the hot path write latency.

Semantic data routing. We instantiated a new swarmlet (swarmlet 3) in our on-premises infras-
tructure deployed on nodes equipped with GPUs (see Fig. 12). We generate a workload using the
OpenMessaging Benchmark in which the benchmark writes images to Kafka containing humans or
not, switching randomly every 2MBs. Then, we configured a two-streamlet pipeline at the Edge: i) a
semantic human detection streamlet via the Yolov5 [39] model (s2), and ii) a data routing streamlet
(s3) that stores a data chunk on a private bucket if any of the processed images include a human.
Note that s2 is a stateful streamlet, meaning that it keeps a @Persistent map of the data chunks
stored in the private bucket.

Fig. 14 (left) shows a time-series with the semantic decisions made by the streamlet pipeline.
Visibly, Nexus stores stream data chunks to the right bucket based on the result of the AI inference
process (when Kafka manages 1MB and 2MB chunks). Furthermore, while s2 is an EventStreamlet
that processes the internal content of a chunk event by event, its implementation allows the user
to perform AI inference on a subset of a chunk’s events. Fig. 14 (right) illustrates s2’s processing
time depending on the image sampling rate and the chunk size. Finally, we tested s2 by using the
proposed partitioned approach vs a shared approach in which any streamlet instance can manage
the streamlet state. In this sense, while the number of metadata writes is similar as any update
needs to be persisted in metadata, we found that the partition-aware data routing reduced in ≈ 98%
read requests to the metadata in our experiment. The reason is that the same streamlet instance was
in charge of managing metadata for a given stream partition thanks to Nexus partition-aware data
routing, thus avoiding having to load the most recent metadata on every request.

Summary The evolution from the initial GEDS–Pravega integration to Nexus reflects a natural pro-
gression from tactical reliability improvements to strategic programmability across the Cloud–Edge
continuum. While GEDS addressed a critical operational gap by masking storage outages in NCT’s
real-time ingestion path, Nexus generalizes this principle into a policy-driven, extensible framework
that transforms tiered storage into an enforcement point for advanced data management. By de-
coupling hot-path streaming from chunk-level operations, Nexus enables buffering, compression,
semantic annotation, and privacy-aware routing without compromising real-time guarantees. Such
capabilities are essential for NCT’s vision of AI-assisted surgery and beyond. Ultimately, Nexus posi-
tions CloudSkin to deliver not only resilience but also intelligence and adaptability at scale, bridging
event streaming systems with heterogeneous infrastructures in a transparent and future-proof man-
ner.

Page 22 of 25

HORIZON - 101092646 CloudSkin
29/12/2025 RIA

5 Conclusions

This report presents an updated and consolidated overview of the CloudSkin dataplane platform
activities, focusing on the storage systems developed. The document first summarizes the existing
GEDS progress, as described in the previous deliverables. It then introduces two new complementary
contributions, GEDS-based WebAssembly Units and Nexus, that together address key limitations in
current cloud–edge data processing systems.

GEDS-based WebAssembly Units extend WebAssembly beyond the constraints of today’s WASI
by integrating GEDS directly at the runtime level, enabling transparent access to tiered, persistent,
and high-performance storage without rewriting or recompiling existing Wasm applications. This
dual-runtime approach complements the C-Cells runtime, allowing the same portable Wasm binaries
to support both distributed computation and fine-grained, I/O-centric data transformations executed
close to storage.

Building on this foundation, Nexus elevates storage tiering into a programmable control point
for data management across the Cloud–Edge continuum. By transparently intercepting tiered stor-
age operations and executing policy-driven streamlets on chunk-level data, Nexus enables buffer-
ing, compression, semantic annotation, and privacy-aware routing without impacting the real-time
ingestion path of event streaming systems. Its abstractions – streamlets, swarmlets, and policies – al-
low data management logic to be flexibly placed across heterogeneous infrastructures and hardware,
while remaining transparent to cloud streaming systems such as Kafka, Pulsar, and Pravega.

Page 23 of 25

HORIZON - 101092646 CloudSkin
29/12/2025 RIA

References

[1] P. Stuedi, A. Trivedi, J. Pfefferle, A. Klimovic, A. Schuepbach, and B. Metzler, “Unification
of temporary storage in the NodeKernel architecture.,” in 2019 USENIX Annual Technical
Conference (USENIX ATC 19), 2019.

[2] A. Haas, A. Rossberg, D. L. Schuff, B. L. Titzer, M. Holman, D. Gohman, L. Wagner, A. Zakai,
and J. Bastien, “Bringing the web up to speed with webassembly,” June 2017.

[3] S. Shillaker and P. Pietzuch, “Faasm: Lightweight isolation for efficient stateful serverless com-
puting,” in 2020 USENIX Annual Technical Conference (USENIX ATC 20), pp. 419–433, USENIX
Association, July 2020.

[4] P. Gackstatter, P. A. Frangoudis, and S. Dustdar, “Pushing serverless to the edge with webassem-
bly runtimes,” in 2022 22nd IEEE International Symposium on Cluster, Cloud and Internet
Computing (CCGrid), pp. 140–149, IEEE, 2022.

[5] Cloudfare, “Cloudfare workers,” mar 2018.

[6] C. Watt, J. Renner, N. Popescu, S. Cauligi, and D. Stefan, “Ct-wasm: type-driven secure cryptog-
raphy for the web ecosystem,” Proc. ACM Program. Lang., vol. 3, Jan. 2019.

[7] J. Protzenko, B. Beurdouche, D. Merigoux, and K. Bhargavan, “Formally verified cryptographic
web applications in webassembly,” in 2019 IEEE Symposium on Security and Privacy (SP),
pp. 1256–1274, 2019.

[8] C. Segarra, S. Shillaker, G. Li, E. Mappoura, R. Bruno, L. Vilanova, and P. Pietzuch, “GRANNY:
Granular management of Compute-Intensive applications in the cloud,” in 22nd USENIX
Symposium on Networked Systems Design and Implementation (NSDI 25), (Philadelphia, PA),
pp. 205–218, USENIX Association, Apr. 2025.

[9] M. Chadha, N. Krueger, J. John, A. Jindal, M. Gerndt, and S. Benedict, “Exploring the use of we-
bassembly in hpc,” in Proceedings of the 28th ACM SIGPLAN Annual Symposium on Principles
and Practice of Parallel Programming, PPoPP ’23, (New York, NY, USA), p. 92–106, Association
for Computing Machinery, 2023.

[10] “Webassembly system interface (wasi).” https://wasi.dev, 2019.

[11] N. Fitzgerald, “Making webassembly and wasmtime more portable,” sep 2024.

[12] S. W. Poole, O. Hernandez, J. A. Kuehn, G. M. Shipman, A. Curtis, and K. Feind, OpenSHMEM
- Toward a Unified RMA Model, pp. 1379–1391. Boston, MA: Springer US, 2011.

[13] G. Linux, “mmap linux manual page.”

[14] J. Napieralla, “Considering webassembly containers for edge computing on hardware-
constrained iot devices,” 2020.

[15] N. Mäkitalo, T. Mikkonen, C. Pautasso, V. Bankowski, P. Daubaris, R. Mikkola, and O. Beletski,
“Webassembly modules as lightweight containers for liquid iot applications,” in International
Conference on Web Engineering, pp. 328–336, Springer, 2021.

[16] A. Jacobs, M. Gülmez, A. Andries, S. Volckaert, and A. Voulimeneas, “System call interposition
without compromise,” in 2024 54th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), pp. 183–194, 2024.

[17] “Preload trick.” https://www.admin-magazine.com/HPC/Articles/Preload-Trick, 2025.

[18] B. Alliance, “Wasmtime,” mar 2022.

Page 24 of 25

https://wasi.dev
https://www.admin-magazine.com/HPC/Articles/Preload-Trick

HORIZON - 101092646 CloudSkin
29/12/2025 RIA

[19] containerd, “runwasi - facilitates running wasm / wasi workloads managed by containerd,”
nov 2022.

[20] R. Gracia-Tinedo, F. Junqueira, T. Kaitchuck, and S. Joshi, “Pravega: A tiered storage system
for data streams,” in ACM Middleware ’23, (New York, NY, USA), p. 165–177, Association for
Computing Machinery, 2023.

[21] “S3proxy.” https://github.com/gaul/s3proxy, 2025.

[22] “Redis.” https://redis.io, 2025.

[23] “Nexus repository.” https://github.com/cloudskin-eu/nexus-nct-streamlets, 2025.

[24] J. Kreps, N. Narkhede, J. Rao, et al., “Kafka: A distributed messaging system for log processing,”
in NetDB ’11, vol. 11, pp. 1–7, 2011.

[25] “Apache kafka.” https://kafka.apache.org, 2024.

[26] “Kip-405: Kafka tiered storage.” https://cwiki.apache.org/confluence/display/KAFKA/
KIP-405%3A+Kafka+Tiered+Storage, 2025.

[27] “Remotestoragemanager for apache kafka tiered storage.” https://github.com/Aiven-Open/
tiered-storage-for-apache-kafka, 2025.

[28] “Apache pulsar.” https://pulsar.apache.org, 2024.

[29] “Apache bookkeeper.” https://bookkeeper.apache.org, 2023.

[30] F. P. Junqueira, I. Kelly, and B. Reed, “Durability with bookkeeper,” ACM SIGOPS operating
systems review, vol. 47, no. 1, pp. 9–15, 2013.

[31] “Pravega.” https://cncf.pravega.io, 2023.

[32] “fio - flexible i/o tester.” https://fio.readthedocs.io, 2025.

[33] “Openmessaging benchmark.” https://github.com/openmessaging/benchmark, 2025.

[34] J. Zhu, S. He, P. He, J. Liu, and M. R. Lyu, “Loghub: A large collection of system log datasets for
ai-driven log analytics,” in IEEE ISSRE’23, pp. 355–366, 2023.

[35] W. Xu, L. Huang, A. Fox, D. Patterson, and M. I. Jordan, “Detecting large-scale system problems
by mining console logs,” in ACM SOSP’09, p. 117–132, 2009.

[36] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-scale hierarchical
image database,” in IEEE CVPR’09, pp. 248–255, 2009.

[37] D. M. J. M. M. D. M. N. P. Andru Twinanda, Sherif Shehata, “Endonet: A deep architecture for
recognition tasks on laparoscopic videos,” IEEE Transactions on Medical Imaging, vol. 36, 02
2016.

[38] “Sra toolkit.” https://hpc.nih.gov/apps/sratoolkit.html, 2025.

[39] G. Jocher, A. Chaurasia, A. Stoken, J. Borovec, Y. Kwon, K. Michael, J. Fang, Z. Yifu, C. Wong,
D. Montes, et al., “ultralytics/yolov5: v7.0-yolov5 sota realtime instance segmentation,”
Zenodo, 2022.

Page 25 of 25

https://github.com/gaul/s3proxy
https://redis.io
https://github.com/cloudskin-eu/nexus-nct-streamlets
https://kafka.apache.org
https://cwiki.apache.org/confluence/display/KAFKA/KIP-405%3A+Kafka+Tiered+Storage
https://cwiki.apache.org/confluence/display/KAFKA/KIP-405%3A+Kafka+Tiered+Storage
https://github.com/Aiven-Open/tiered-storage-for-apache-kafka
https://github.com/Aiven-Open/tiered-storage-for-apache-kafka
https://pulsar.apache.org
https://bookkeeper.apache.org
https://cncf.pravega.io
https://fio.readthedocs.io
https://github.com/openmessaging/benchmark
https://hpc.nih.gov/apps/sratoolkit.html

	Executive summary
	GEDS overview
	Background
	Motivation and Problem Statement
	GEDS Architecture and Design
	Multi-Tiered Storage Hierarchy
	Metadata Service (MDS)

	Key Features and Interoperability
	Zero-Copy Integration
	Language Bindings and APIs
	Elasticity and Resilience

	Use Cases and Performance Evaluation
	Summary

	GEDS-based WebAssembly Units
	Background and motivation
	GEDS-Wasm integration
	Integration architecture
	WASI hostcall interposition

	Evaluation
	Performance microbenchmarks
	Data migration in GEDS-based WebAssembly Units and external alternatives

	Summary

	Nexus: Programmable Data Management across the Cloud-Edge Continuum
	Motivation
	Nexus in a Nutshell
	Nexus in Action
	Validation
	Setup
	Interception Performance
	Enhancing Event Streaming Systems

	Conclusions

