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1 Executive Summary

This deliverable presents GRANNY, the first full-system implementation using C-Cells as its exe-
cution unit. GRANNY focuses on one particular workload: scientific applications using MPI and
OpenMP. We first motivate why these applications are relevant to CLOUDSKIN. Then we describe
GRANNY, and show how by using C-Cells, and C-Cell-migration, we can improve the performance
and resource utilization of large clusters of VMs running these applications. In addition, we also
provide a first prototype of extending GRANNY with higher privacy and security guarantees. In our
future work we describe how GRANNY can be used as a reference implementation for future systems
using C-Cells as their execution unit.
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2 Introduction

CLOUDSKIN’s goal is to build an environment for the Cloud-edge continuum. This work package,
WP4, is responsible for the design and implementation of a key piece in the Cloud-edge continuum:
its execution unit. We have named the execution units of the cloud-edge continuum Cloud-Edge Cells
(or C-Cells, for short). In D4.1 we presented the first prototype implementation for C-Cells. In this
deliverable, D4.2, we present GRANNY, the first implementation of a complete distributed system
using C-Cells as its executing unit.

There are several application domains that would benefit from executing in CLOUDSKIN’s cloud-
edge continuum. For the first reference implementation, in D4.2 we pick a domain that is suited to
the current limitations of C-Cells. As previously described in D4.1, C-Cells currently only support
execution in X86 [1] enviornments. Support for AArch64 [2] is experimental, and not ready for a pro-
duction environment, and do not have accelerator (e.g. Graphic Processing Unit (GPU) [3], TPU [4],
FPGA [5]) support. Consequently, AI workloads (other than a simple inference), are out of the scope.
On top of that, we want an application domain that can benefit from C-Cells’ high-performance ex-
ecution and low-overhead live migration. Our application domain of choice is, thus, long-running
compute-intensive scientific applications.

To support different flavours of scientific applications, or multi-tenant execution, C-Cells also
need to be compatible with different software and hardware techniques for ensuring high-performance
execution while keeping up the isolation between applications. Here we also present the state-of-the-
art isolation support for C-Cells by using a Trusted Execution Environment, namely Intel SGX. En-
veloping C-Cells execution by Intel SGX has two-fold benefits: application can have isolation from
both other applications as well as the privileged entities such as the Operating System (OS) while
having minimal performance degradation in the long-running compute-intensive scientific applica-
tion.

In this deliverable, we present GRANNY, a system for granular management of compute-intensive
applications using C-Cells. To make our system as generic as possible, and given C-Cells’ language
and API independence, we tackle a very broad class of scientific applications. GRANNY supports
any application written using the popular OpenMP [6] or MPI [7] APIs. These two APIs have for
decades been the de-facto standard to implement multi-threaded (for scale-up) and multi-process (for
scale-out) applications. We also believe that targeting scientific applications using OpenMP/MPI
will facilitate the adoption of GRANNY (and C-Cells) by our use-cases, and the scientific community
more broadly. We also present our prototype of equipping C-Cells with Intel SGX using SCONE
framework.

The rest of the document is structured as follows. §3 provides background and motivation into
why we have chosen scientific applications and OpenMP/MPI. §4 presents GRANNY, the first dis-
tributed system that uses C-Cells to execute unmodified applications. §5 presents a thorough and
exhaustive evaluation of different policies that we can build based on C-Cells, and C-Cell migration.
To finish-up, we outline future lines of work in §6.

3 Background: Compute-Intensive Applications and Why They Matter

Compute-intensive applications are common in many domains including machine learning [8], weather
forecasting [9], hydrodynamics [10], genomics [11], simulation, and modeling [12]. These appli-
cations must exploit parallelism, and therefore, they often use programming models that employ
multiple threads (with shared memory) and/or multiple processes (with message passing), such as
OpenMP [6] and MPI [7]. These programming models allow applications to scale to hundreds or
thousands of CPU cores across nodes.

To accommodate their resource demands, such applications are deployed on shared clusters with
high node and CPU core counts, either on-premise or, increasingly, in the cloud. Clusters are man-
aged by resource managers, e.g. Slurm [13] or Azure/AWS/Google Batch [14, 15, 16], which monitor
a queue of submitted application jobs and allocate them to resources (e.g. CPU cores).

Existing resource managers, however, cannot alter an application’s resource allocation after it has
started executing. This is because existing shared memory/message passing runtimes [17, 18] do
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Figure 1: Time-series of idle vCPUs (left) and cross-VM network links (right) when executing a trace
of 100 MPI jobs on a 32-VM cluster. We compare GRANNY, with two state-of-the-art batch schedulers:
Azure Batch [14] and Slurm [13].

not support modifications to distribution or parallelism at runtime. Such changes could violate the
consistency of message-passing or shared data: e.g. when changing distribution in MPI, messages
may be in-flight; when changing parallelism in OpenMP, shared data structures may be inconsistent
pending synchronization. This lack of flexibility prevents these compute-intensive applications from
harnessing the benefits of elastic fine granular resource management in the cloud.

As an example, consider the tension between compute/ data locality and resource utilisation in
clouds [19, 20]: high utilisation can be achieved by allocating resources at fine-grained granularity
(e.g. allocating CPU cores to applications, as they become available), but this leads to fragmented
resources, and thus worse communication performance. Different schedulers handle this tension
differently: when executing MPI applications, the Azure Batch [14] scheduler allocates resources at
VM granularity. Azure Batch thus achieves good locality at the cost of resource utilization, because
idle CPUs cores in VMs cannot be used to execute other applications; in contrast, Slurm [13], an-
other popular scheduler, allocates at CPU granularity. Thus, Slurm has high utilization but incurs
fragmentation. While high utilization is desirable for cloud providers, high locality, as a proxy for
performance, is desirable for users. We observe that an ideal cloud scheduler must thus navigate this
trade-off by, e.g. compacting applications at runtime as new cluster resources become available.

Fig. 1 shows the execution of 100 MPI jobs on a 32 VM cluster (§5). We present the time-series
of idle vCPUs as a proxy for resource utilization and the number of cross-VM links as a proxy for
locality. We compare GRANNY with Azure Batch [14] and Slurm [13]. As previously introduced,
Azure Batch allocates resources at VM granularity, so it therefore achieves optimal locality (in terms
of cross-VM links) at the cost of leaving 25% of resources (in terms of vCPUs) idle. On the other hand,
Slurm allocates resources at CPU granularity, achieving high utilization at the cost of fragmentation
and poor locality, and therefore poor performance. With GRANNY, we can navigate the trade-off to
achieve optimal performance and utilization. In this experiment we configure GRANNY to target a
threshold utilization (95% in this case) and use the remaining idle vCPUs to compact applications as
they become fragmented. As a consequence GRANNY can improve performance on both baselines
by up to 25%.
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Domain Name Language MT MP

Molecular dynamics LAMMPS [26] C++ ✗ ✓

MDAnalysis [27] Python ✓ ✗

Bio-informatics BioPython [28] Python ✓ ✗

gatk [29] Java ✓ ✗

Fluid dynamics OpenFOAM [10] C++ ✗ ✓

SU2 [30] C++ ✓ ✗

Deep learning OpenCV [31] C++ ✗ ✓

Tensorflow [32] Python ✓ ✗

Table 1: Github’s most-starred projects in compute-intensive domains use multi-threading (MT) or
multi-processing (MP)

In addition, no matter how effective a scheduler’s bin-packing approach is, it cannot completely
avoid idle resources. This is particularly true for multi-threaded applications, which cannot be dis-
tributed across VMs. Our experiments show that, when deploying OpenMP applications, Azure
Batch and Slurm consistently leave 60% and 40% of CPUs idle, respectively, even when there are still
pending applications to be scheduled (§5.2). Cloud providers have developed elastic execution mod-
els such as serverless [21, 22, 23] to increase utilization, but these are not well-suited for executing
existing shared memory or message passing applications without major changes.

Finally, failures and evictions impact the resources that long-running applications have in cloud
environments. For example, spot VMs [24] have gained prominence as a cost-effective way to run
cloud workloads, but any spot VM may be evicted after a short grace period (e.g. 1 min on Azure [25]).
Existing schedulers, such as Azure Batch, are forced to re-start execution after an eviction was de-
tected, because current shared memory and message passing runtimes cannot handle such a fine-
grained resource change.

We argue that all of the above challenges can be addressed through executing threads and pro-
cesses as C-Cells, enabling fine-granular resource management at runtime with low-overhead migration.
In the rest of this section, we characterize compute-intensive applications (§3.1), describe associ-
ated resource managers (§3.2), and explain why current shared memory and message passing run-
times fail to support the flexible and fine granular resource management needed in cloud environ-
ments (§3.3).

3.1 Compute-intensive applications

Compute-intensive applications include large-scale data analytics [33], video processing [34], and
deep learning training [32], and also typical high performance computing (HPC) workloads, such
as fluid dynamics [10], molecular simulation [26], and weather forecasting [9]. These applications
require plentiful hardware resources, and they must parallelize the computation by distributing it
across many CPU cores, both within nodes and across nodes.

To handle increasing problem sizes without increasing execution time or exhausting memory,
compute-intensive applications make use of scale-up and scale-out patterns. Such patterns are im-
plemented using multi-threading (with shared memory) and/or multi-processing (with distributed
message passing), as offered by programming models such as OpenMP [6] and MPI [7]. Tab. 1 shows
the most starred open-source GitHub repositories in several application domains, and how all of
them use either or both of these programming models.

3.2 Cluster resource managers

Compute-intensive applications are deployed on large clusters (either on-premise or in the cloud)
with high CPU core and node counts. Users submit applications as jobs to a work queue managed
by a cluster resource manager. The resource manager allocates jobs to compute resources (e.g. CPU
cores) according to a job’s demand, e.g. as indicated by mpirun’s np flag [35], or the OMP_NUM_THREADS
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High High Eviction
utilization locality resilience

Azure, AWS, GoogleBatch [15,
14, 16]

✗ ✓ ✗

Slurm [13], Volcano [37], Kube-
Batch [38]

✓ ✗ ✗

GRANNY ✓ ✓ ✓

Table 2: Comparison of cluster resource managers

environment variable [36]. Tab. 2 summarizes existing cluster resource managers and their associated
trade-offs.

1 int[] weights = initWeights ();
2

3 for (int i = 0; i < numSteps; i++) {
4 #pragma omp parallel shared(weights) {
5 int threadNum = omp_get_thread_num ();
6 int nThreads = omp_get_num_threads ();
7 updateWeights(
8 weights , threadNum , nThreads );
9

10 #pragma omp single
11 applyWeights(weights );
12 }

Listing 1: Pseudocode for machine learning
training using OpenMP’s parallel abstraction
(Within the parallel block, the OpenMP run-
time controls the degree of parallelism, and
ensures access to and synchronisation of the
shared variable weights.)

1 int worldSize , rank;
2 MPI_Comm_size(MPI_COMM_WORLD , &worldSize );
3 MPI_Comm_rank(MPI_COMM_WORLD , &rank);
4 int[] weights = initWeights ();
5

6 for (int i = 0; i < numSteps; i++) {
7 updateWeights(weights , rank , worldSize );
8 MPI_Allreduce(
9 MPI_IN_PLACE , weights , nWeights ,

10 MPI_INT , MPI_SUM , 0, MPI_COMM_WORLD );
11 if (rank == 0) applyWeights(weights );
12 }

Listing 2: Pseudocode for machine learning
training using MPI’s MPI_Allreduce function
(The MPI runtime controls the degree of paral-
lelism, data partitioning and messaging topol-
ogy.)

Cloud providers use resource managers such as AWS Batch [15], Azure Batch [14], and Google
Batch [16] to execute shared memory and message passing applications. These resource managers
have a pool of VMs that can be scaled up or down on-demand. They schedule jobs once sufficient
VMs are available, thus optimizing for locality. By scheduling to as few VMs as possible, they min-
imize inter-VM communication, thus improving per-job performance, but this comes at the cost of
utilization: idle CPU cores in VMs cannot be allocated to other pending jobs.

For finer-grained control over the scheduling logic and the underlying VM pool, some cloud
providers support general-purpose resource managers such as Slurm [13], KubeBatch [38], or Vol-
cano [37], which are also often used for on-premise clusters. Slurm maximizes utilization by allo-
cating resources at CPU core granularity, but this comes at the cost of locality, as the VMs become
fragmented over time.

Existing resource managers must therefore choose between high utilization or high locality, be-
cause they cannot change the distribution or parallelism of jobs at runtime. In addition, when the
underlying resources changes, e.g. because a spot VM is evicted from the pool, an affected job must
be restarted.

3.3 Shared memory/message passing runtimes

Multi-threaded applications with shared memory or multi-process applications with message pass-
ing require runtime support. Runtimes such as OpenMP [6] provide functionality to manage threads,
coordinate access to shared state, and provide synchronization primitives; runtimes such as MPI [7]
also handle inter-node messaging, message synchronization, and data partitioning.
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Consider two sample implementations of stochastic gradient descent (SGD) [39], a core algorithm
in machine learning training—one with OpenMP (Listing 1) and another with MPI (Listing 2). As
shown in Listing 1, OpenMP’s omp parallel construct means that the for loop can be executed in par-
allel with access to a single shared variable, the weights vector. The OpenMP runtime then synchro-
nizes writes to the shared variable from multiple threads. Similarly, in Listing 2, the MPI_Allreduce()
operation allows concurrent processes to execute the same function to transform and aggregate re-
sults on multiple nodes, sending messages to synchronize.

Such runtimes, however, were not designed with features that would allow a cloud provider to
manage job resources dynamically and control parallelism at a fine granularity. In particular, the exe-
cution abstractions used by runtimes, namely threads and processes, are tied to resources (CPU cores)
and do not support dynamic reallocation. Runtimes decide on the allocated resources (CPU cores and
VMs) and degree of parallelism at deployment time: in Listing 1 (lines 5–6), the program queries the
runtime to obtain the current thread identifier and the total number of threads; in Listing 2 (lines 2–3),
the program is given the number of nodes (worldSize) and the current process identifier (rank) from
the runtime. Any change in the resource allocation would require the migration of execution threads
or processes, which is unsupported.

While compute-intensive applications could use existing process-level (e.g. CRIU [40]) or VM-
level migration techniques [41], such techniques incur significant overheads [42], which are well
understood [43] e.g. when migrating during a parallel section in OpenMP, the memory of all threads
must be transferred. For MPI applications, these challenges are further exacerbated: since MPI ap-
plications are distributed, a single-process checkpointing approach cannot ensure consistent check-
points across all processes. Applying existing migration techniques [44] thus requires extensive
changes to applications and OS kernels.

We observe that what existing runtimes for compute-intensive applications lack is a single ab-
straction that unifies thread- and process-based parallelism. Such an abstraction could then enable
efficient fine granular resource management in cloud environments, including elastic scaling and
dynamic migration. In the next section we argue why C-Cells are the right implementation of this
abstraction.

4 GRANNY

In this deliverable, we present the design of GRANNY, a new cloud runtime for compute-intensive
applications (§4.1). At the core of GRANNY are C-Cells (§4.2). C-Cells support efficient migration,
because their full state can be captured using snapshots (§4.3). GRANNY controls the execution
of Granules at well-defined control points (§4.4). At each control point, GRANNY may decide to
spawn a C-Cell to add a new thread or process (§4.5), or migrate a C-Cell to another VM (§4.6).
Executing threads and processes as C-Cells, GRANNY can implement a variety of fine grain resource
management policies (§4.7), as well as providing C-Cells with additional security guarantees with
Intel SGX (§4.8).

4.1 Overview

With GRANNY, each shared memory and message passing application is executed as one or more
C-Cells (shown as circles in Fig. 2). GRANNY executes one runtime instance per VM, and each in-
stance manages the set of C-Cells executing on that VM. The managed C-Cells can belong to mul-
tiple applications (indicated by different colors in Fig. 2). GRANNY employs a logically centralized
resource manager, the Planner , to schedule C-Cells on nodes and implement policies for managing
C-Cells (§4.7). Each application has a compute demand in terms of CPU cores (indicated by a number
in the figure).

Fig. 2 shows how GRANNY implements a policy for defragmenting applications to increase local-
ity: it migrates C-Cells between VMs when new idle resources become available in order to consoli-
date the application onto fewer VMs. In Fig. 2-a, GRANNY eagerly schedules the yellow application
from the submission queue when there are at least six compute slots available in the VM pool. When
the red application completes (Fig. 2-b), the Planner can use the newly freed slots to migrate the
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Figure 2: Management using GRANNY’s distributed runtime. Each GRANNY instance runs on a VM
and controls a variable-sized pool of C-Cells. A Planner defragments applications to increase locality
when other applications have completed.
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Figure 3: C-Cells on a VM execute within a single virtual address space. Each C-Cell has a simple
memory layout that can be used to spawn new child granules with thread or process semantics.

C-Cells of the yellow application between VMs, thus defragmenting the application (Fig. 2-c).

4.2 C-Cell abstraction

In this section, we re-introduce C-Cells in the context of GRANNY. C-Cells unify multi-threaded and
multi-process execution, and C-Cells can interact with each other through regular shared memo-
ry/message passing APIs.

For this, C-Cells can share memory directly with each other (i) to implement thread semantics and
(ii) to exchange messages efficiently when implementing inter-process communication. C-Cells are
therefore implemented as WebAssembly (WASM) modules [45]: application code is cross-compiled
to WASM, as a platform independent binary instruction format. The use of WASM allows C-Cells
in a VM to execute side-by-side within a single virtual address space, together with the GRANNY

runtime (Fig. 3, left), while enforcing memory safety [46].
To preserve thread/process semantics, each C-Cell is spawned from a parent C-Cell: a C-Cell

executing a thread shares the static sections (code and data) and heap area with its parent (Fig. 3,
thread); a C-Cell executing a process only shares the static section with its parent (Fig. 3, process).

To exchange messages between C-Cells, which is needed for message passing, C-Cells use shared
memory queues and the GRANNY runtime manages cross-VM delivery over the network. C-Cells
have consistent addresses that remain unchanged, even when a C-Cell is migrated between VMs.
When two C-Cells are located on the same VM, message delivery by the runtime exploits efficient
local shared queues.

Page 8 of 23



HORIZON - 101092646 CloudSkin
30/06/2024 RIA

Application code

C-Cell host interface

Control points

Implementation (syscalls, MPI, OpenMP)In
te

rfa
ce

 c
al

l Application
(WASM)
Granny
runtime
(C++)R

et
ur

n 
va

lu
e

Figure 4: Control points are triggered when application code calls certain APIs, before their imple-
mentation is executed.

4.3 C-Cell snapshots

WASM’s linear memory model [45] means that C-Cells have a simple memory layout (Fig. 3, right).
Therefore, a C-Cell’s entire execution state can be encapsulated in a snapshot . A snapshot contains
the linear memory, with its stack and heap and function tables. It also includes C-Cell state that is
stored in the host’s runtime like messaging queues and open file descriptors.

Having a concise snapshot representation for C-Cells is an essential requirement for migration.
Since all state is contained in a snapshot, GRANNY does not require OS kernel modifications to obtain
the full execution state of a C-Cell. This is in contrast to general process checkpointing [40], which
must also extract process state from the OS kernel.

Since C-Cells are spawned from parent C-Cells, a new C-Cell shares memory with its parent.
This enables GRANNY to implement optimizations that improve the performance of C-Cell spawn-
ing (§4.5) and migration (§4.6). In particular, GRANNY can efficiently represent the difference be-
tween the snapshots of two C-Cells through byte-wise diffs . A byte-wise diff is a list of memory
spans that describe regions in which the two snapshots differ. GRANNY uses byte-wise diffs to re-
duce the amount of memory transferred between VMs when C-Cells are spawned on remote VMs or
migrated.

4.4 Interrupting C-Cells at control points

GRANNY takes control over C-Cell execution at control points . A control point is triggered by a
system call or a call to a shared memory/message passing API. There are two types of control points:
(i) regular control points and (ii) barrier control points. At regular control points, such as system
calls, the application state is not guaranteed to be consistent, but this still allows GRANNY to send
point-to-point messages or operate on shared memory. In contrast, barrier control points guarantee
that the application state is consistent, e.g. no messages must be in-flight, and no shared memory
areas must be pending to be synchronised. Therefore, GRANNY can only trigger C-Cell migration at
barrier control points.

Creating barrier control points requires semantic knowledge of the shared memory/message
passing API. For example, the implementation of MPI_Barrier has a reduce phase in which all C-Cells
send messages to the C-Cell with the lowest MPI rank, and a broadcast phase in which all C-Cells are
notified that the barrier has completed. After the reduce phase, the C-Cell with the lowest MPI rank
can rely on the fact that there are no outstanding messages, and has thus reached a consistent state.

Fig. 4 shows the call stack when application code triggers a control point. We refer to the set
of all possible such APIs that application code may call as the C-Cell’s host interface. The C-Cell
host interface combines system/POSIX, MPI and OpenMP APIs: for the system/POSIX interface,
GRANNY uses WASM’s system interface (WASI [47]); for MPI, it uses the standard MPI_* APIs,
e.g.MPI_Reduce [7]; for OpenMP, it uses the underlying LLVM OpenMP runtime interface, i.e. once
pragmas have been transformed to function calls, e.g.__kmpc_fork_call [48].

GRANNY must intercept calls for control points without a large runtime overhead. The symbols
corresponding to these calls are left undefined when cross-compiling the application to WASM, and
marked as function imports [49]. The symbols are then implemented by the GRANNY runtime and
linked to C-Cells at runtime. While all of these calls trigger a WASM context switch, these context
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Figure 5: Snapshots spawn new C-Cells. Each C-Cell is spawned from a parent snapshot. All C-Cells
in an application have a common base snapshot, and all subsequent snapshots are expressed as byte-
wise diffs from the base. Byte-wise diffs for child C-Cells (with process semantics) ignore the heap
and stack sections; byte-wise diffs for migration do not.

switches are fast (tenths of cycles, similar to a function call [50]).

4.5 Spawning C-Cells from byte-wise diffs

As described in §4.2, C-Cells are spawned from a snapshot of their parent C-Cell. When both par-
ent and child are co-located in the same VM, and thus in the same virtual address space, GRANNY

spawns a C-Cell by mapping its memory regions to the parent’s snapshot. When parent and child
are not co-located, e.g. in a distributed MPI application, GRANNY sends a snapshot (or a byte-wise
diff) over the network and spawns the child from the parent’s snapshot.

By sending a byte-wise diff instead of a full snapshot, GRANNY greatly reduces the amount of
data transferred, e.g. avoiding sending the code and data sections, which can be up to hundreds of
MBs for large compute-intensive applications, thus reducing remote spawn time.

Fig. 5-a shows local and remote C-Cell spawning in more detail. All C-Cells in an application
share a base snapshot with the code and data sections. The first C-Cell is spawned locally from the
base snapshot (Fig. 5-a, 1 ). In the background, base snapshots can be distributed to other VMs 2 .
When a C-Cell starts a remote spawn, GRANNY takes a snapshot of the C-Cell 3 and sends it to the
destination VM. Note that this second snapshot is expressed as a byte-wise diff of the base snap-
shot (§4.3). Finally, the new C-Cell can be spawned locally from the copy of the snapshot 4 . Subse-
quent remote spawns from the same C-Cell result in local spawns from the snapshot copy 5 .

4.6 Migrating C-Cells

C-Cell migration is similar to a remote C-Cell spawn with one difference: when spawning remote
C-Cells with process semantics (e.g.MPI_Init), the byte-wise diff must ignore regions in the snapshot
that do not need to be synchronized, such as the stack and the heap. When migrating a C-Cell,
the byte-wise diff does not ignore the stack and the heap, as execution must resume from where it
stopped.

Fig. 5-b shows the steps of C-Cell migration. After a C-Cell reaches a barrier control point, the
Planner decides if the C-Cell must be migrated based on its policy (not shown). If the C-Cell is to be
migrated, GRANNY takes a new snapshot (Fig. 5-b, 1 ), and sends it, as a byte-wise diff, to the desti-
nation VM, together with any missing prior snapshots 2 . Note that, under a defragmentation policy
that co-locates C-Cells as resources become available (Fig. 2), prior snapshots will already likely exist
at the destination VM due to previous migrations, thus reducing costs. Finally, the migrated C-Cell
is spawned locally from the local snapshot 3 .

4.7 Granular Application Management

The unified abstraction of C-Cells, which offers migratable threads and processes, enables new po-
lices for fine granular resource management in cloud environments. State-of-the-art resource man-
agers such as Azure Batch [14] and Slurm [13] are limited to resource allocation decisions at deploy-
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ment time: they must decide on the specific resources and their number when a job is removed from
the job queue, and any decision cannot be changed even if it turns out to be suboptimal.

GRANNY, on the other hand, is not limited to making scheduling decisions only when jobs are
removed from the queue. Instead, C-Cells can be spawned, interrupted, checkpointed, and migrated
at runtime without violating shared memory or message passing semantics. This ability allows for
new dynamic scheduling policies. In this section, we describe different policies supported by our
GRANNY prototype.

4.7.1 Improving locality

Existing resource managers can either optimize for locality, by delaying job allocation until sufficient
unfragmented resources have become available, or for utilization, by allocating jobs to any available
resource. In contrast, GRANNY’s Planner can allocate resources greedily and then defragment (i.e.
compact) the cluster when other resources become available (as shown in Fig. 2). We refer to this as
a compaction policy.

A compaction policy is useful for message passing applications that benefit from being co-located,
because it minimizes the number of cross-VM messages that must be communicated over the net-
work. When an application reaches a barrier control point, the Planner checks if it can benefit from a
change of distribution that improves locality by reducing the number of cross-VM network links. Es-
pecially, for network-bound applications, this improvement in co-location leads to an improvement
in performance. For other cluster sizes or heterogeneous clusters, we envision other policies that
consider co-location, e.g. in terms of NUMA awareness or rack placement.

We show experimentally in §5.1 that, using a compaction policy, GRANNY maintains high cluster
utilization while keeping fragmentation low, improving performance.

4.7.2 Improving resource utilization

Even with a compaction policy, some resources in the cluster may still be idle due to the nature of
the bin-packing scheduling. For example, each cluster node may have some spare capacity that is
insufficient to deploy a new application. With GRANNY, we can utilize this capacity by leveraging
C-Cells that are part of multi-threaded (OpenMP) applications. Such applications contain parallel
code sections that can be scaled elastically at runtime.

To benefit from elasticity, an elastic policy greedily assigns extra available local CPU cores to ap-
plications whenever an application reaches a barrier control point. Such a policy may slightly delay
the scheduling of pending jobs, but it maximizes cluster utilization and improves job performance
by exploiting extra parallelism.

In §5.2, we show experimentally that this policy improves end-to-end execution time while de-
creasing idle CPU cores.

4.7.3 Eviction from ephemeral resources

Compute-intensive applications may be deployed on a pool of spot VMs [24] to benefit from lower
costs. Here, application processes face eviction when spot VMs are withdrawn by the cloud provider
after a short grace period. Despite this, the application must make steady progress even in the pres-
ence of these partial failures.

To achieve this goal, it is possible to implement a policy in GRANNY that follows a two-part mi-
gration approach: (1) when the cloud provider notifies the Planner of an upcoming spot VM eviction
from the pool, it stops the scheduling of C-Cells on that VM; (2) when the existing C-Cells on the
to-be-evicted VM reach a barrier control point, the Planner tries to reschedule them on the remaining
VMs. If there are insufficient available compute resources, snapshots are taken of all affected C-Cells,
send to the Planner, and the C-Cells are terminated. Jobs with these interrupted C-Cells are then
added to the beginning of the job queue.

In §5.3, we show experimentally that, using this policy, GRANNY can reduce end-to-end execution
time when deploying compute-intensive applications using spot VMs.
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Figure 6: Initial Confidential C-Cells architecture

4.8 Confidential C-Cells with Intel SGX

To support confidential computing within in Cloudskin architecture, we use SCONE to lift-and-shift
not only local C-Cells runtime but also other components as well. Currently, SCONE supports Intel
SGX as the hardware-backing Trusted Execution Environment (TEE). Intel SGX provides a powerful
tool for developers to create secure, trusted, and performant applications that protect sensitive data
and computation.

SCONE is able to convert user application to be SGX-compatible, either by recompilation or au-
tomatic image generation. However, some protection that is outside of the Intel SGX’s scope are still
needed. In this case, SCONE also provides a mechanism to ensure data-at-rest integrity through its
file system shield as well as protecting network interaction via its network shield.

4.8.1 The importance of confidential computing on Cloudskin architecture

As mentioned in Deliverable D4.1, Cloudskin’s (and GRANNY’s) architecture is based on Faasm, a
stateful serverless runtime. In Fig. 6 shows the overview of its architecture with respect to confiden-
tiality. We will then elaborate on what is the importance of enveloping some of the components with
a TEE.

A user could compile its scientific application written in its language of choice, for example, CPP
or Python. This component lies on the user side and hence, does not need to be protected. A user,
then, can upload the program to an upload server. Upload server’ task is to receive all function, state,
and shared file uploads. It can then forward necessary and suitable binary to the S3-compatible
storage. As a user, it is important to trust the upload server since it will transform a user program to
be compatible with workers capabilities. Similarly, a user needs to trust S3-compatible storage either
by encrypting the data, relying to a third-party, or self-hosting it with TEE. Here we focus with the
self-hosted solution by deploying TEE-powered MinIO.

Then, at some point, the central planner will delegate task execution to one of the workers. Since
the adversary could take control of, or impersonate both, it is important to make sure that both are
trusted. Compromised planner can, for example, fake the workload scheduling in such a way that
sensitive computation method or data could be sniffed and manipulated. A compromised worker
combined with a powerful adversary controlling the orchestrator could fake and alter the workload
execution, making the user have incorrect perception.

4.8.2 Implementation of Confidential C-Cell

We have implemented C-Cells, which is based on Faasm and Faaslet, to be compatible with Intel SGX
supported by SCONE framework. Most of the components described in Fig. 6 is now TEE-protected,
except the one on the user side as we deemed it is not necessary. In general, the implementation
could be described in a few phases:

Page 12 of 23



HORIZON - 101092646 CloudSkin
30/06/2024 RIA

In the first phase, we need to ensure the compatibility between Faasm runtimes and Intel SGX.
Currently, Faasm support two runtimes: WAVM and WAMR. We focus on WAMR since WAVM has
not been actively developed for the last two years. This decision also limit the language the user
can use, restricting them to deploy only CPP-based workload. We made minor changes to WAMR
runtime as well as set up default workload configuration that is compatible with Intel SGX.

In the next phase, we involved both SCONE and Faasm developers. We adapted the runtime’s
dependencies to be compatible with SCONE. SCONE is based on musl libc instead of a more popular
but rather bloated GNU libc. Therefore, some libraries do not support musl out-of-the box. Our
contribution is not only beneficial to confidential adaptation but also to the upstream to support
more cases in the future. One of the examples of such case is the lack of a backtrace function in musl
libc.

In a separate issue, we also disabled hardware bound checks with the WAMR runtime. This
is due to how SCONE allocates memory which causes heap fragmentation. WAMR, as one of the
WebAssembly runtimes, allocates linear virtual memory at the beginning. Although this virtual
memory allocation will be rarely used due to the nature of bound checking, this is an acknowledged
problem inside an SGX enclave. Enabling manual memory allocation using malloc and checking it
afterwards is still supported. Since SCONE is still actively developed, hopefully this issue will be
resolved in the future. Alternatively, one could implement a garbage-collection like approach on the
runtime, although that might introduce complications as hinted in the upstream.

Last important phase is to also support other components in Cloudskin architecture, namely Re-
dis and MinIO. Although users have an option to trust a third-party service, we believe deploying
both services on-premise offers more control and gives more relevance to the project as a whole. We
in collaboration with SCONE, add experimental support on gcc compiler as the Go compiler. In this
experimental support, we replace all syscall instructions in Go to use the SCONE syscall interceptor.
Moreover, we introduce a dedicated runtime stack for system calls due to the expansive nature of the
Go stacks. Initially, SCONE relies on dynamic linking to enable applications running on top of Intel
SGX. We also provide an alternative approach for Go in such a way that it is also compatible with the
statically linked executable.

5 Evaluation

Our evaluation explores the benefits of using GRANNY to run compute-intensive applications in the
cloud in terms of: (i) improving performance and locality while maintaining a target utilization with
compaction (§5.1); (ii) improving performance and utilization by allocating extra CPU cores (§5.2);
and (iii) ensuring efficient fault-tolerant execution with ephemeral spot VMs (§5.3).

To break down where these benefits come from, we also analyze: (i) the overhead of executing
MPI applications with C-Cells instead of processes (§5.4); (ii) the overhead of executing OpenMP ap-
plications with C-Cells instead of threads (§5.5); (iii) the cost of migrating C-Cells (§5.6); and (iv) the
cost of scaling-up to use extra CPU cores (§5.7).

Lastly, we also analyze the baseline costs of making C-Cells confidential by executing them inside
SGX enclaves (§5.8).

5.1 Improving performance and locality with defragmentation

This experiment explores the benefits of using GRANNY to improve application performance and lo-
cality while maintaining a target cluster utilization. We use a compaction policy in the Planner that
migrates C-Cells of an MPI application at runtime to reduce fragmentation (§4.7.1). Each application
job executes the LAMMPS [12] molecule dynamics simulator, running the Lennard-Jones (LJ) bench-
mark with a varying number of MPI processes. Jobs are executed in order, and may wait in a queue
until sufficient resources become available in the cluster.

For our baselines, we use the Azure Batch (batch) and Slurm (slurm) schedulers, as described
in §3.2. Given that the performance benefits stem from more effective co-location, we make both
baselines use Granny’s MPI implementation for a fair comparison.

Fig. 7 shows various performance metrics, as we increase the number of VMs and the number of
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Figure 7: Defragmenting message passing applications using migration. We compare GRANNY with
Azure Batch and Slurm. We report the total end-to-end execution time (left-most), and the CDF of
job-completion time (left). For the (32 VMs, 100 Jobs) execution we also report the time-series of idle
vCPUs (right), and number of cross-VM network links (right-most).
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Figure 8: Elastically scaling-up multi-threaded applications to use extra CPU cores. We compare
GRANNY with Azure Batch, Slurm, and GRANNY without elastic scaling. We report the makespan
(leftmost), and an aggregate metric for cluster utilization (left). For the (32 VMs, 200 Jobs) experiment
we also report the CDF of JCT (right), and the time-series of idle CPU cores (rightmost).

jobs. Fig. 7-leftmost shows that GRANNY improves end-to-end execution time (makespan) by up to
20%. Using compaction, GRANNY always improves makespan across all baslines and cluster sizes.

To show the compaction policy in action, Fig. 7-right and Fig. 7-rightmost plot the time-series of
idle vCPUs (as a proxy for cluster utilization) and cross-VM network links (as a proxy for locality)
for the (32 VMs, 100 Jobs) execution. We see that, differently to Slurm, GRANNY deliberately leaves
a percentage of vCPUs idle corresponding to a target utilization (5% in this experiment). GRANNY

can use these spare vCPUs to defragment applications at runtime, achieving consistently 25% less
fragmentation than Slurm. In fact, GRANNY is closer in terms of fragmentation to Azure Batch,
which behaves optimally with respect to this metric, with only 5% idle vCPUs, whereas Azure Batch
leaves 30% of vCPUs unused.

Fig. 7-left shows that this reduction in fragmentation at high cluster utilization has a direct impact
on job completion time (JCT). For the (32 VMs, 100 Jobs) execution, GRANNY improves median JCT
and tail JCT by up to 20%. We conclude that GRANNY with compaction can navigate the utilization-
locality trade-off in a more fine-grained way compared to Azure Batch and Slurm.

5.2 Elastically scaling CPU cores

This experiment explores the benefits of using GRANNY to improve per-job performance and clus-
ter utilization by elastically scaling-up the parallelism of shared memory jobs using OpenMP (§4.7.2).
Each job is a multi-threaded application that runs a large-scale version of the p2p ParRes OpenMP ker-
nel [51], which performs a compute-intensive pipelined parallel algorithm on a large matrix. In this
experiment, the native baselines (batch and slurm) execute jobs using LLVM’s OpenMP runtime [18].

Fig. 8 shows a variety of performance metrics, as we scale both the number of VMs in the cluster
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Figure 9: Execution of applications on spot VMs. We report the makespan slowdown (left) and the
monetary cost assuming a unit cost per VM-hour (right). With GRANNY, it is always more cost-
effective to use spot VMs.

and the number of submitted jobs. Fig. 8-leftmost shows that GRANNY improves makespan by up
to 60% compared to the native baselines and GRANNY without elastic scaling (granny-no-elastic).
This performance improvement stems from the fact that GRANNY can reduce the idle CPU cores in
the cluster by up to 30% (Fig. 8-left), and use these extra cores to improve median JCT and tail JCT
by up to 50% (Fig. 8-right).

This large performance gap can be understood when considering how many computing resources
are left idle by the native baselines. Fig. 8-rightmost shows a time-series of the percentage of idle
vCPUs when running 200 jobs on a 32-VM cluster. Azure Batch and Slurm, even when the job
queue is not empty, consistently leave 60% and 40% of vCPUs idle. This is due to multiple rea-
sons: (i) OpenMP jobs have fixed parallelism; (ii) it is not possible to distribute jobs across different
VMs; and (iii) in the case of Azure Batch, it is not possible to run jobs from multiple users on the same
VM. By harvesting these extra resources, GRANNY maintains the fraction of idle vCPUs at around
20%, while there are still pending jobs in the queue.

5.3 Faul-tolerant execution on spot VMs

This experiment explores the performance benefits of using GRANNY to execute compute-intensive
applications on a cluster with ephemeral spot VMs. The submitted jobs and the native baselines are
the same as in §5.1. In this experiment the native baselines execute jobs using OpenMPI [17]. To
emulate the behaviour of spot VMs, while making our findings reproducible, we withdraw VMs at a
pre-defined rate with a 1 min grace period.

The eviction rate for this experiment is 25% of the VMs, selected at random, each minute. We
choose this eviction rate after measuring the eviction rate for Standard_D8_v5 spot VMs using Azure’s
Resource Graph Analyzer [25] (25% per hour) and scaling it to our MPI jobs’ length (minutes, instead
of hours, to make the experiments reproducible).

Fig. 9-left shows the reduction in makespan when comparing each baseline to itself without evic-
tions. We see that, across cluster and batch sizes, all OpenMPI baselines experience a minimum of
a 50% slowdown, and a maximum of a 2× slowdown. This is because the native baselines must
restart jobs each time they fail due to an evicted VM. Instead, GRANNY uses the eviction-aware pol-
icy described in §4.7.3. As a consequence, its slowdown is at most 25%, which is consistent with the
eviction rate.

The native slowdowns of 50%–100% can potentially thwart the cost benefits of using spot VMs.
Indeed, Fig. 9-right shows the normalized cost of each execution for the range of discounts based on
Azure’s spot VM price list [52]: 30%, 60%, and 90%. We calculate the cost by assuming a unit price
per VM-hour and applying the corresponding discount. We also overlay the cost of not using spot
VMs.

We observe that, for the native baselines, the effectiveness of spot VMs in terms of cost savings
depends on the discount rate at which they are offered. Counterintuitively, for many discount ranges,
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Figure 10: Performance executing MPI applications. As workloads we use the LAMMPS simulator
(left) and a subset of the ParRes Kernels (right).

it is not cost-effective to run compute-intensive applications using OpenMPI on spot VMs, because
the re-execution costs outweigh the price discount. In contrast, with GRANNY, it is always cost-
effective to use spot VMs, because the eviction slowdown is lower than the smallest cost discount.

5.4 Message passing performance

This experiment investigates GRANNY’s performance when executing message passing applications.
We run the same MPI application as in §5.1. To stress GRANNY’s communication layer, we update the
benchmark and increase the synchronisation steps, resulting in three orders of magnitude more cross-
VM messages. We refer to the vanilla LJ benchmark as compute, and the modified one as network. We
also execute a subset of the ParRes kernels [51] to evaluate specific parts of GRANNY’s MPI imple-
mentation.

Fig. 10-left shows the slowdown in execution time of GRANNY compared to OpenMPI when
executing the two LAMMPS simulations with different levels of parallelism across two VMs. We
observe that the overhead introduced by GRANNY is within 10% and often negligible. GRANNY

occasionally introduces minor performance gains due to the benefits of intra-process co-location of
C-Cells.

Fig. 10-right shows the slowdown when executing the ParRes kernels with different levels of
parallelism. For this workload, the performance of GRANNY and OpenMPI varies more than for
LAMMPS, because these parallel kernels execute particular MPI operations in a tight-loop. As a
consequence, the performance benefit of intra-process co-location of C-Cells becomes much more
significant, leading to a substantial performance benefit for GRANNY. In these cases, GRANNY can
replace the sending of messages (reduce) with reducing shared memory variables.

5.5 Shared memory performance

Next, we measure GRANNY’s performance when executing OpenMP jobs. We execute the ParRes
kernels [51] in their OpenMP implementation. We execute each kernel with a varying number of
threads, and take the average execution time over 5 runs.

Fig. 11 shows the slowdown in execution time of GRANNY compared to LLVM’s OpenMP imple-
mentation for a variety of kernels. We observe that, for most kernels, GRANNY performance matches
the native baseline. For the dgemm kernel, GRANNY introduces an 80% slowdown. This kernel per-
forms a dense matrix multiplication, and the overheads come from WebAssembly’s less efficient
floating-point operations [53].

5.6 C-Cell migration

This experiment explores GRANNY’s performance overhead when migrating C-Cells at runtime, and
the potential benefits of improved co-location. As workloads, we use the compute-bound LAMMPS
simulation, and a network-bound all-to-all kernel, which performs synchronisation over a vector in
a loop. For each experiment, we force the Planner to fragment the 8 MPI processes across two VMs,
and migrate half of them to the other VM at 20%, 40%, 60%, or 80% of execution time.
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Figure 11: Performance executing OpenMP ParRes Kernels.
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Figure 12: Speedup when migrating C-Cells. We deploy 8 MPI processes across two VMs and migrate
4 at runtime. We report the speedup compared to not migrating. As workloads we use a network-
bound all-to-all kernel (left) and a compute-bound LAMMPS simulation (right).

Fig. 12-left shows the speedup when migrating a purely network-bound application compared to
not migrating at all. For such an application, fragmentation has a high cost: the speedup for running
in one VM (1 VM) is 7.7×. By migrating after 20%, 40%, 60%, and 80%, of execution, GRANNY achieves
speedups of 3.5×, 2.2×, 1.5×, and 1.1×, respectively. We conclude that it is always worth to migrate
C-Cells at runtime for network-bound applications.

Fig. 12-right shows the speedup when migrating a compute-bound application. For such an ap-
plication, fragmentation is less of an issue: the speedup for running in one VM is 1.7×. By migrating
after 20% and 40% of execution, we achieve speedups of 1.3× and 1.1×, respectively. We observe
no benefit when migrating later during execution. GRANNY’s migration mechanism introduces a
negligible overhead, enabling cloud providers to optimize for locality.

Migration time is dominated by the time to transfer the snapshot (or byte-wise diff) from one VM
to another. For a 4 MB snapshot, corresponding to the all-to-all kernel, C-Cell migration is on the
order of 30 ms. From this, only 3 ms corresponds to creating the snapshot, which is almost an order
of magnitude faster than a highly-optimized version of CRIU [43].

5.7 Elastic scale-up

Next, we examine the benefits of elastically scaling up the execution of multi-threaded applications
to use extra available CPU cores. As a workload, we deploy the same OpenMP application as in §5.2.
We initially use a varying number of OpenMP threads, and scale up to all available CPU cores (8)
after 50% of execution. We report the speedup compared to not scaling at all.

Fig. 13 shows that, by scaling-up to use more CPU cores, GRANNY achieves a speedup of up to
60% when scaling from 1 to 6 threads. With more than 7 initial threads, we do not observe a benefit,

Page 17 of 23



HORIZON - 101092646 CloudSkin
30/06/2024 RIA

1 2 3 4 5 6 7 8
Number of OpenMP threads

0.0

0.5

1.0

1.5

Sp
ee

d-
Up

 
 [N

o-
El

as
tic

 / 
El

as
tic

]

Figure 13: Speedup when elastically scaling to more vCPUs (We deploy a varying number of
OpenMP threads, and elastically scale up to all CPU cores after 50% of execution. We report the
speedup compared to not scaling up).

as we have exhausted the application’s parallelism. We conclude that elastically scaling-up does
not slow down execution, because elastic scaling integrates naturally as part of OpenMP’s fork-join
semantics.

5.8 Initial performance measurement on Confidential C-Cells

Our next experiment is to analyze and provide a base line of running an C-Cells compatible appli-
cation on top of Intel SGX, specifically after using lift-and-shift approach by SCONE runtime. We
performed Polybench benchmark suite on Xeon machine with a E-2186G CPU that has 3.80GHz fre-
quency. We set the SCONE heap for each worker to 8 GB, the worker threads to 2 threads, and left
the rest as default.

In Fig. 14, we show various programs that are included in Polybench performance relative to its
native execution counterparts. We draw a line at 1.0000 to show that program runs on both execution
(Native and Trusted) have exactly the same performance. We also provide different tuning alterna-
tives as comparison. Tuning 1 involves very high spinning, which improves system call handling at
the expense of higher CPU cycles. Meanwhile, Tuning 2 not only has higher spinning than default
although less than Tuning 1 but also very low system call sleep back-off time. Note that typically a
user want to adjust those kinds of tuning profiles based on a specific use case. For completeness, we
also include a case where we use a native worker.

Based on the experiment, we found out that having the Polybench benchmark running inside the
C-Cells and on top of Intel SGX does not degrade performance. The average overhead by introducing
confidentiality with default tuning compared to native execution is roughly 0.05%. Note that in this
experiment, all components are trusted, unless the ’Native worker’ where the worker is in native
environment. Both of our tuning alternative improve the performance further.

One of the nature of the serverless application is its short-duration and burstiness. Although
based on previous studies, application can still run while retaining its native performance on top of
Intel SGX, we are aware that the typical challenge is the enclave creation. Therefore, we examined
our current approach with respect to startup time on multiple environments. In this experiment, we
run one simple IO program which only retrieves some string from user, allocates memory, and prints
the string back.

In Fig. 15, we show boot duration on the worker for the workload we described above. As ex-
pected, doing it with SCONE runtime, regardless whether it is run on top of Intel SGX or not, in-
troduces significant delay. In Fig. 15, HW and SIM means that it runs with and without Intel SGX,
respectively. In SCONE, SIM mode refers to an environment where SCONE simulates how Intel create
an enclave. In SIM mode, a developer can deduct whether the overhead comes from the hardware
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Figure 14: Confidential C-Cells benchmark with polybench.
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Figure 15: Confidential C-Cells startup time on worker.

or the enclave mechanism. Here, we conclude that since each workload needs to have and spawn its
own enclave, each then will have significant startup delay due to memory movement and encryption
in an enclave. Here, the startup delay introduced by SCONE could be 10 times more than the native
one.

Lastly, we examined again with the same simple workload its duration. Consistent with previous
performance experiment, the degradation with respect to performance is minimal. This pictured
in Fig. 16. Invoke time here means the time time needed for a single workload invocation to be
successful. After the worker booted up, we started to measure the time and recorded it again after
the invocation finished, before worker teardown.

Based on those experiments, we draw several conclusions. First, the introduction of confidential
approach to C-Cells does not degrade the performance. In all cases, we get less than 1% overhead.
This applies to both simple workloads and the Polybench benchmark suite. However, we notice that
reducing the startup time could be challenging. Current approach shows significant overhead with
10 times larger delays. Although, as we mentioned earlier in §2, our domain of choice is long-running
compute-intensive scientific application. This domain fits well our current limitation and we left the
challenge of reducing startup time as future work.

6 Future Work

This deliverable marks the halfway point of the CLOUDSKIN project. For the second half of the
project, the main tasks to do in WP4 are the following.
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Figure 16: Confidential C-Cells general overhead.

First, extend, and evaluate, the usage of GRANNY to some of the use-cases of the project. In D2.3
we list some of the ways in which we are going to do so. Secondly, we want to address some core
limitations of C-Cells, like hardware (ISA) independence, as well as more front-end programming
languages support (specially managed runtimes like Python). Third, in terms of confidentiality, we
would also like to address the startup time when spawning a confidential worker. There are multiple
approaches, namely having a warm worker, or make the enclave creation efficient by having some
state. Lastly, we also want to evaluate with more (different) applications to further motivate the
extensibility and usability of C-Cells.

7 Conclusions

In this deliverable we have presented GRANNY, the fist reference implementation of a system using
C-Cells to improve performance and resource utilization of real-world scientific applications.

Scientific applications often rely on shared memory and message passing programming models to
harness the parallelism of CPU cores in large clusters. We observe that existing resource management
approaches in cloud environments are, however, incompatible with such workloads, as resource
managers are unable to balance resource locality and utilization effectively in shared VM pools. Our
evaluation shows that by executing multi-threaded OpenMP and multi-process MPI applications
using C-Cells, GRANNY can implement a variety of policies to improve job execution time, or idle
resource usage.

From the confidential perspective, we have added support to C-Cells in Cloudskin architecture
one of the most popular TEE, namely Intel SGX with the support of SCONE. The implementation
itself was not trivial, but we managed to integrate all components with Intel SGX enclave. We also
evaluate our prototype with Polybench benchmark suite. The result is exceptional as there is very
minimal performance degradation.

Page 20 of 23



HORIZON - 101092646 CloudSkin
30/06/2024 RIA

References

[1] Wikipedia, “x86,” 2023.

[2] Wikipedia, “Aarch64,” 2023.

[3] Wikipedia, “Graphical processing unit,” 2023.

[4] Wikipedia, “Tensor processing unit,” 2023.

[5] Wikipedia, “Field-programmable gate array,” 2023.

[6] OpenMP, “The OpenMP API specification for parallel programming.” https://www.openmp.
org/specifications/, 2021.

[7] MPI, “MPI Forum.” https://www.mpi-forum.org/, 2022.

[8] B. Li, R. B. Roy, T. Patel, V. Gadepally, K. Gettings, and D. Tiwari, “Ribbon: Cost-effective and
qos-aware deep learning model inference using a diverse pool of cloud computing instances,”
in Proceedings of the International Conference for High Performance Computing, Networking,
Storage and Analysis, SC ’21, Association for Computing Machinery, 2021.

[9] Press Office, “Up to 1.2 billion for weather and climate supercomputer.”
https://www.metoffice.gov.uk/about-us/press-office/news/corporate/2020/
supercomputer-funding-2020, 2022.

[10] OpenFOAM, “Github - OpenFOAM.” https://github.com/OpenFOAM/OpenFOAM-dev, 2022.

[11] AWS, “Genomics in the cloud.” https://aws.amazon.com/health/genomics/, 2022.

[12] S. Plimpton, “Fast parallel algorithms for short-range molecular dynamics,” Journal of
Computational Physics, 1993.

[13] SchedMD, “Slurm Workload Manager.” https://slurm.schedmd.com/overview.html, 2024.

[14] Microsoft, “Azure Batch.” https://azure.microsoft.com/en-us/services/batch/, 2021.

[15] Amazon Web Services, “AWS Batch.” https://aws.amazon.com/batch/, 2021.

[16] Google, “Google Cloud Batch.” https://cloud.google.com/batch, 2023.

[17] OpenMPI, “OpenMPI: Open Source High Performance Computing.” https://www.open-mpi.
org/, 2021.

[18] LLVM Project, “LLVM/OpenMP documentation.” https://openmp.llvm.org/, 2022.

[19] K. Kennedy and K. S. McKinley, “Optimizing for parallelism and data locality,” in Proceedings
of the 6th International Conference on Supercomputing, ICS ’92, (New York, NY, USA),
p. 323–334, Association for Computing Machinery, 1992.

[20] M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek, and J. Wilkes, “Omega: flexible, scalable
schedulers for large compute clusters,” in Proceedings of the 8th ACM European Conference on
Computer Systems, EuroSys ’13, (New York, NY, USA), p. 351–364, Association for Computing
Machinery, 2013.

[21] Amazon Web Services, “AWS Lambda.” https://aws.amazon.com/lambda/, 2021.

[22] Microsoft, “Azure Functions.” https://docs.microsoft.com/en-us/azure/
azure-functions/, 2021.

Page 21 of 23

https://www.openmp.org/specifications/
https://www.openmp.org/specifications/
https://www.mpi-forum.org/
https://www.metoffice.gov.uk/about-us/press-office/news/corporate/2020/supercomputer-funding-2020
https://www.metoffice.gov.uk/about-us/press-office/news/corporate/2020/supercomputer-funding-2020
https://github.com/OpenFOAM/OpenFOAM-dev
https://aws.amazon.com/health/genomics/
https://slurm.schedmd.com/overview.html
https://azure.microsoft.com/en-us/services/batch/
https://aws.amazon.com/batch/
https://cloud.google.com/batch
https://www.open-mpi.org/
https://www.open-mpi.org/
https://openmp.llvm.org/
https://aws.amazon.com/lambda/
https://docs.microsoft.com/en-us/azure/azure-functions/
https://docs.microsoft.com/en-us/azure/azure-functions/


HORIZON - 101092646 CloudSkin
30/06/2024 RIA

[23] Google, “Google Cloud Functions.” https://cloud.google.com/functions, 2021.

[24] Azure, “Use Spot VM Instances.” https://learn.microsoft.com/en-us/azure/
virtual-machines/spot-vms, 2024.

[25] Azure, “Use Spot VM Instances - Eviction Rate and Pricing History.” https://learn.
microsoft.com/en-us/azure/virtual-machines/spot-vms#pricing-and-eviction-history,
2024.

[26] Sandia National Laboratories, “Github - LAMMPS.” https://github.com/lammps/lammps,
2020.

[27] MDAnalysis, “Github - mdanalysis.” https://github.com/MDAnalysis/mdanalysis, 2022.

[28] BioPython, “Github - BioPython.” https://github.com/biopython/biopython, 2022.

[29] Broad Institute, “Github - gatk.” https://github.com/broadinstitute/gatk, 2022.

[30] su2code, “Github - SU2.” https://github.com/su2code/SU2, 2022.

[31] OpenCV, “Github - OpenCV.” https://github.com/opencv/opencv, 2022.

[32] TensorFlow, “Github - TensorFlow.” https://github.com/tensorflow/tensorflow, 2022.

[33] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica, “Spark: cluster computing
with working sets,” in Proceedings of the 2nd USENIX Conference on Hot Topics in Cloud
Computing, HotCloud’10, (USA), p. 10, USENIX Association, 2010.

[34] L. Ao, L. Izhikevich, G. M. Voelker, and G. Porter, “Sprocket: A serverless video processing
framework,” in Proceedings of the ACM Symposium on Cloud Computing, SoCC ’18, (New
York, NY, USA), p. 263–274, Association for Computing Machinery, 2018.

[35] OpenMPI, “mpirun - Man Page.” https://www.open-mpi.org/doc/v3.0/man1/mpirun.1.php,
2024.

[36] OpenMP Api Specification, “OMP_NUM_THREADS.” https://www.openmp.org/spec-html/
5.0/openmpse50.html, 2022.

[37] Volcano, “Cloud native batch scheduling system for compute-intensive workloads.” https://
volcano.sh/en/, 2024.

[38] kube batch, “A batch scheduler of kubernetes for high performance workload, e.g. AI/ML, Big-
Data, HPC.” https://github.com/kubernetes-retired/kube-batch, 2024.

[39] H. E. Robbins, “A stochastic approximation method,” Annals of Mathematical Statistics, 2007.

[40] CRIU, “Checkpoint-Restore in Userspace.” https://www.criu.org/Main_Page, 2021.

[41] VMWare, “Migrating Virtual Machines.” https://docs.vmware.com/en/VMware-vSphere/7.
0/com.vmware.vsphere.vcenterhost.doc/GUID-FE2B516E-7366-4978-B75C-64BF0AC676EB.
html, 2024.

[42] K. Z. Ibrahim, S. Hofmeyr, C. Iancu, and E. Roman, “Optimized pre-copy live migration for
memory intensive applications,” in Proceedings of 2011 International Conference for High
Performance Computing, Networking, Storage and Analysis, SC ’11, (New York, NY, USA),
Association for Computing Machinery, 2011.

Page 22 of 23

https://cloud.google.com/functions
https://learn.microsoft.com/en-us/azure/virtual-machines/spot-vms
https://learn.microsoft.com/en-us/azure/virtual-machines/spot-vms
https://learn.microsoft.com/en-us/azure/virtual-machines/spot-vms#pricing-and-eviction-history
https://learn.microsoft.com/en-us/azure/virtual-machines/spot-vms#pricing-and-eviction-history
https://github.com/lammps/lammps
https://github.com/MDAnalysis/mdanalysis
https://github.com/biopython/biopython
https://github.com/broadinstitute/gatk
https://github.com/su2code/SU2
https://github.com/opencv/opencv
https://github.com/tensorflow/tensorflow
https://www.open-mpi.org/doc/v3.0/man1/mpirun.1.php
https://www.openmp.org/spec-html/5.0/openmpse50.html
https://www.openmp.org/spec-html/5.0/openmpse50.html
https://volcano.sh/en/
https://volcano.sh/en/
https://github.com/kubernetes-retired/kube-batch
https://www.criu.org/Main_Page
https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.vcenterhost.doc/GUID-FE2B516E-7366-4978-B75C-64BF0AC676EB.html
https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.vcenterhost.doc/GUID-FE2B516E-7366-4978-B75C-64BF0AC676EB.html
https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.vcenterhost.doc/GUID-FE2B516E-7366-4978-B75C-64BF0AC676EB.html


HORIZON - 101092646 CloudSkin
30/06/2024 RIA

[43] X. Wei, F. Lu, T. Wang, J. Gu, Y. Yang, R. Chen, and H. Chen, “No provisioned concurrency:
Fast RDMA-codesigned remote fork for serverless computing,” in 17th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 23), (Boston, MA), pp. 497–517, USENIX
Association, July 2023.

[44] C. Wang, F. Mueller, C. Engelmann, and S. L. Scott, “Proactive process-level live migration in hpc
environments,” in SC ’08: Proceedings of the 2008 ACM/IEEE Conference on Supercomputing,
pp. 1–12, 2008.

[45] A. Haas, A. Rossberg, D. L. Schuff, B. L. Titzer, M. Holman, D. Gohman, L. Wagner, A. Zakai,
and J. Bastien, “Bringing the Web up to Speed with WebAssembly,” ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI), 2017.

[46] E. Johnson, D. Thien, Y. Alhessi, S. Narayan, F. Brown, S. Lerner, T. McMullen, S. Savage, and
D. Stefan, “Veriwasm: Sfi safety for native-compiled wasm,” 01 2021.

[47] WASI, “WebASsembly System Interface.” https://wasi.dev/, 2024.

[48] LLVM Project, “LLVM OpenMP Runtime Library Interface.” https://openmp.llvm.org/
doxygen/index.html, 2024.

[49] FFmpeg Contributors, “Webassembly lld port.” https://lld.llvm.org/WebAssembly.
htmlimports, 2022.

[50] S. Narayan, T. Garfinkel, M. Taram, J. Rudek, D. Moghimi, E. Johnson, C. Fallin, A. Vahldiek-
Oberwagner, M. LeMay, R. Sahita, D. Tullsen, and D. Stefan, “Going beyond the limits of
sfi: Flexible and secure hardware-assisted in-process isolation with hfi,” in Proceedings of the
28th ACM International Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 3, ASPLOS 2023, (New York, NY, USA), p. 266–281, Association for
Computing Machinery, 2023.

[51] ParResKernels Team, “Parallel Research Kernels.” https://github.com/ParRes/Kernels, 2021.

[52] Azure, “Pricing - Linux Spot VMs.” https://azure.microsoft.com/en-gb/pricing/details/
virtual-machines/linux/#pricing, 2024.

[53] S. Shillaker and P. Pietzuch, “Faasm: Lightweight isolation for efficient stateful serverless com-
puting,” in USENIX Annual Technical Conference (USENIX ATC), USENIX Association, 2020.

Page 23 of 23

https://wasi.dev/
https://openmp.llvm.org/doxygen/index.html
https://openmp.llvm.org/doxygen/index.html
https://lld.llvm.org/WebAssembly.htmlimports
https://lld.llvm.org/WebAssembly.htmlimports
https://github.com/ParRes/Kernels
https://azure.microsoft.com/en-gb/pricing/details/virtual-machines/linux/#pricing
https://azure.microsoft.com/en-gb/pricing/details/virtual-machines/linux/#pricing

	Executive Summary
	Introduction
	Background: Compute-Intensive Applications and Why They Matter
	Compute-intensive applications
	Cluster resource managers
	Shared memory/message passing runtimes

	Granny
	Overview
	C-Cell abstraction
	C-Cell snapshots
	Interrupting C-Cells at control points
	Spawning C-Cells from byte-wise diffs
	Migrating C-Cells
	Granular Application Management
	Improving locality
	Improving resource utilization
	Eviction from ephemeral resources

	Confidential C-Cells with Intel SGX
	The importance of confidential computing on Cloudskin architecture
	Implementation of Confidential C-Cell


	Evaluation
	Improving performance and locality with defragmentation
	Elastically scaling CPU cores
	Faul-tolerant execution on spot VMs
	Message passing performance
	Shared memory performance
	C-Cell migration
	Elastic scale-up
	Initial performance measurement on Confidential C-Cells

	Future Work
	Conclusions

