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1 Executive summary

Deliverable D4.3, Reference Implementation of the Cloud-Edge Platform, presents the final outcome of
CLOUDSKIN's WP4, Adaptive Virtualization for the Cloud-Edge Continuum. The goal of WP4 is to pro-
vide the execution layer to enable virtualization in the cloud-edge continuum. This deliverable
builds on D4.1, where we introduced C-Cells , CLOUDSKIN’s execution abstraction, and D4.2, where
we introduced GRANNY, the first system implementation of a runtime using C-Cells. In this de-
liverable, we present a unification of the previous prototypes into a single execution layer, and full
open-source reference implementations for CLOUDSKIN, and Sconeified Pravega, a combination of
secure C-Cells with the streaming storage platform from WP3. We also present integrations of WP4
with different use-cases, and an extensive evaluation on the KIO testbed that confirms the fulfillment
of all KPIs related to C-Cells.
The key contributions of this deliverable are:

¢ Final C-Cell abstraction. The CLOUDSKIN execution abstraction integrates low-overhead We-
bAssembly isolation, with fine-grained snapshotting and live migration as presented in GRANNY.

¢ Confidential C-Cells. Secure execution of C-Cells inside trusted execution environments (TEEs)
with the integration between SCONE and Pravega for secure storage and processing of data.

¢ Two reference implementations. The GRANNY runtime, for scientific applications, and Sconi-
tied Pravega, for privacy-preserving data streaming.

* Two use-case integrations based on the metabolomics and computer-assisted surgery use-
cases.

* Deployment and validation We validate the reference implementations as well as the use-case
integration in the KIO testbed.

* Open-source releases We describe the open-source releases and maintenance of the reference
implementations.

Together, these contributions present a unified view of CLOUDSKIN” execution platform and its
integration with the storage layer (WP3), learning plane (WP5), and its use-cases.

Page 2 of 30
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2 Introduction
2.1 CLOUDSKIN WP4 Objectives and Scope

WP4 is responsible for the execution layer of the cloud-edge continuum. The goals and objectives of
WP4 can be summarized in its four main tasks:

T4.1. C-Cell Abstraction: In D4.1, we presented C-Cells, a unified execution abstraction for threads
and processes based on the lightweight WebAssembly sandbox. The use of WebAssembly as an inter-
mediate representation and sandbox solution enables the transparent support of legacy applications
written in a variety of programming languages, including complex stacks like MPI or OpenMP, with-
out sacrificing performance. WebAssembly also makes C-Cells portable, enabling their transparent
execution in heterogeneous hardware.

T4.2. Execution and Virtualization for C-Cells: In D4.2, we instantiated the first execution runtime
for C-Cells, GRANNY. GRANNY is a distributed runtime that supports the execution of C-Cells run-
ning unmodified OpenMP and MPI applications. GRANNY manages the distributed message passing
and shared memory accesses through the use of control points a lightweight virtualization technique
to trap application execution with very limited runtime overhead. In D4.3, we provide further details
on GRANNY’s design, implementation, and open-source release and maintenance.

T4.3. Orchestration and Migration for C-Cells: In D4.2, we also described the design and implemen-
tation of different resource orchestration policies for CLOUDSKIN based on performance, locality, or
cost-effectiveness. Using the control-points from T4.2, we also implement lightweight C-Cell migra-
tion, a key requirement to materialize the resource orchestration policies.

T4.4. Confidential C-Cells: In D4.3, we present the mature integration of C-Cells with trusted exe-
cution environments (TEEs), in order to enable the integration of CLOUDSKIN” WP4 with use cases
that require confidential data processing.

2.2 Role of WP4 in the CLOUDSKIN Context

As the unified execution layer of CLOUDSKIN, WP4 needs to interface with the ephemeral data stor-
age offered by WP3 and the learning-plane offered by WP5.
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Figure 1: CLOUDSKIN Architecture Overview

Figure 1 shows the high-level architecture of CLOUDSKIN, and the role of WP4 in relation to other
work packages, and the overall system. As previously introduced, WP4 provides the virtualization
layer for the cloud-edge continuum. It offers lightweight isolation of applications via the C-Cell
abstraction, as well as live migration and confidential execution via GRANNY and Sconified Pravega.
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The latter integrates with the ephemeral and steaming infrastructure layer (i.e. Pravega), whereas
the former integrates with the learning plane by exposing configurable orchestration policies that are
workload- and infrastructure-aware.

A Sconified Pravega is a Pravega deployment in which server components are executed inside
Trusted Execution Environments (TEEs) using the SCONE framework. SCONE “sconifies” appli-
cations by placing them inside Intel SGX enclaves, thus transparently encrypting memory and net-
work traffic and enforcing attestation before starting up, so applications and data are protected from
the host OS, hypervisor, or cloud operator. Using this Pravega version in the infrastructure layer
brings benefits when handling sensitive real-time streams (e.g. medical video analytics) with mini-
mal changes to code, auditable trust through attestation, and a balanced security performance profile
suitable for production.

WP4 is, by design, a horizontal work-pacakge, where we provide a unified execution layer that
suits all targeted use-cases of the cloud-edge continuum. To show the vertical integration of the
different layers, as part of our use-case integrations, we build systems that utilize components from
each layer. For example, we developed an image analysis pipeline that consumes medical images
from a Pravega instance into a secure C-Cell to extract embeddings, without any personal identifiable
information. It then transfers those results to an OpenMP job that performs ML inference in parallel,
where the degree of parallelism (i.e. the number of C-Cells involved in the computation) is decided
elastically, by an algorithm in the orchestration layer. This algorithm uses lightweight monitoring and
decides when to add or remove C-Cells from the computation. This whole prototype is deployed on
KIO networks’ cloud-edge testbed.

2.3 Scope and Non-Goals of D4.3

D4.3 consolidates the different prototypes of WP4, namely GRANNY and Sconified Pravega, into a
single platform, and delivers their reference implementation and open-source distribution and main-
tenance. D4.3 also demonstrates the prototype integration with a third-party cloud-edge provider (KIO)
and use-cases from WP5 and WP6. More importantly, D4.3 does not re-explain the detailed back-
ground from D4.1 and D4.2, even though their core contributions are summarized in Section 3.

Table 1 summarizes the focus areas of the different deliverables in WP4, their contributions, and
their relationship to D4.3.

C-Cell release
candidate and

and orchestration for C-
Cells.

distributed execution of C-
Cells, with live migration of

Deliverable Focus Area Contribution How D4.3 Extends It

D4.1 T41—C-Cell  abstraction | Introduced first C-Cell de- | D4.3 unifies the abstractions

Initial C-Cell | and early prototype. sign including WebAssem- | into a single execution layer,

prototype bly based isolation, and | and showcases it via verti-
early SCONE integration. cal use-case integrations.

D4.2 T4.2 + T4.3—Virtualisation | Introduced GRANNY: full | D4.3 integrates Al-enabled

policies from the learning
plane (in the use-case) via

GRANNY MPI and OpenMP applica- | Grafana monitoring.
tions and resource orches-
tration policies.

D4.3 Full WP4 scope (T4.1-T4.4). | Reference  system  im- | N/A

Final  refer- plementation and KPI

ence imple- validation.

mentation

Table 1: Evolution of WP4 deliverables from initial prototype to final reference implementation.

24 WP4 Achievement Summary

As D4.3 is the last deliverable for WP4, we also summarize the key achievements of this work pack-

age:

Core Technical Achievements
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¢ Design and implementation of CLOUDSKIN's universal execution layer for the cloud-edge con-
tinuum.

* Design and implementation of transparent, efficient live migration of distributed applications
via control-points.

¢ Adaptive virtualization using WebAssembly and trusted execution environments, supporting
a wide-variety of use-cases.

* Transparent confidential execution through the integration with SCONE with modest execution
overhead.

Reference Implementation & Open-Source

* GRANNY is a distributed system using C-Cells for the execution, management, and orchestra-
tion of unmodified scientific applications using MPI and OpenMP. GRANNY was presented at
USENIX NSDI 2025 [1], and is open-sourced as part of the Faasm serverless runtime with al-
most one thousand stars on Github. For dissemination, we also forked the repository under the
cloudskin-eu GitHub organization.!

* Sconified Pravega demonstrates a confidential data streaming stack by integrating the open-
source Pravega [2] data streaming platform and the SCONE [3] confidential computing plat-
form.?

Deployment & Validation

¢ We validate our reference implementations through a full-deployment on KIO’s cloud-edge
testbed, including SGX-enabled nodes.

* We showcase the fulfilment of all the targeted KPIs.

Ihttps://github. com/cloudskin-eu/granny
2https://github.com/cloudskin-eu/scone-pravega/
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3 Background From Previous Deliverables

This deliverable acts as a colophon to WP4, and builds, as shown in Table 1, on the previous deliver-
ables D4.1 and D4.2. In this sectionm, we briefly give relevant background.

3.1 Deliverable D4.1

D4.1 introduces C-Cells and provides extensive background on its key enabling technologies, We-
bAssembly and SCONE. It also describes the first implementation draft, based on Faasm’s Faaslets [4].
D4.1 also provides an early integration of Faaslets with SCONE. For efficiency and integration pur-
poses, the confidential C-Cell support presented in this deliverable deviates slightly from that proto-
type. In the evaluation section, we present early results on multi-thread and multi-process support
in WebAssembly. We show that WebAssembly’s inherent overheads are low, but distributed shared
memory, message passing, and confidential execution, if not done properly, can introduce substantial
runtime overheads.

3.2 Deliverable D4.2

D4.2 focuses primarily on GRANNY, the first full-system implementation using C-Cells. GRANNY’s
key contribution is a distributed runtime for C-Cells that manages the comunication and (shared)
state of each C-Cell. To demonstrate how GRANNY’ design can enable a variety of workloads with
limited overhead, we introduce support for unmodified scientific applications using OpenMP and
MPI. We execute various molecule dynamic simulation applications as well as linear algebra pro-
grams and show limited overhead. We also implement live migration and elastic scaling of MPI
processes and OpenMP threads, respectively, and implement basic resource orchestration policies
that utilize this mechanisms to improve some target, cluster-wide, metrics.
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4 Final CLOUDSKIN Execution Runtime

This section presents the final overview of the execution layer for CLOUDSKIN and summarizes its
key design choices, features, and deployment.

4.1 Overview

CLOUDSKIN uses C-Cells as a universal execution unit across the cloud-edge continuum. As a uni-
versal execution layer, C-Cells must support a variety of programming languages and hardware
deployment modes across cloud and edge nodes. The choice of WebAssembly as intermediate repre-
sentation and sandboxing solution automatically ticks all of these boxes. In order to provide multi-
thread, multi-process, snapshotting, migration and TEE support we extend the WebAssembly ab-
straction from the simple Faaslet interface, to what we now refer to as C-Cells, as we describe next.

4.2 Evolution of the C-Cell Abstraction

C-Cells were initially single-node, single-thread, and only supported simple applications. We then
implemented control-points as lightweight trap mechanism to transfer execution control from the
C-Cell to the host runtime using WebAssembly’s native symbol interface. Additionally, using We-
bAssembly’s linear memory layout, we implement efficient C-Cell snapshotting. Collectively, control-
points and snapshots are the building blocks to implement efficient inter-VM snapshot-restore which,
in turn, enabled two key integrations:

1. Rich application support C-Cells support unmodified execution of a variety of applications
written in a variety of programming languages. From multi-process applications written in
MPI, multi-threaded applications written in OpenMP, and machine-learning inference pipelines
written in Rust. As part of the evaluation results presented in D4.2, for example, we execute
dynamic molecule simulations using LAMMPS [5], an open-source C++ framework with tens
of thousands of lines of code and stars on Github.

2. Resource orchestration policies In order to enable the efficient management of C-Cell-powered
applications, C-Cells must support low-overhead, management to effectuate the policies indi-
cated by the learning plane. Via control-points, we implement snapshotting and live migration,
achieving migration times of less than 100 ms.

KPI Description WP4 Contribution
KPI1 | Performance parity between instrumented and | C-Cells introduce less than 5% runtime over-
non-instrumented workloads. head

KPI2 | Transparent migration C-Cell migration with sub-100 ms distruption

KPI3 | Heterogeneous execution C-Cells execute across the cloud-edge contin-
uum.

KPI4 | Trusted execution with minimal overhead. Confidential C-Cells via SCONE execute in
SGX enclaves.

KPI5 | Support for complex applications. Distributed C-Cells can execute unmodified
MPI/OpenMP applications.

KPI6 | Dynamic elastic scaling. Vertical scaling reduces idle vCPUs by 20-40%
for OpenMP applications.

KPI7 | Support for bursty, short-lived workloads. C-Cell start-up time is less than 10 ms.

KPI8 | Real-world testbed deployment. Deployment of prototypes on KIO network’s
testbed.

Table 2: Relationship between CLOUDSKIN KPIs and WP4’s contributions

This evolution of the C-Cell abstraction has enabled the achievement of all the relevant KPIs, as
we showcase in Table 2. KPIs 1 and 2 require performance parity between C-Cell-enabled appli-
cations and their native counterparts, as well as minimal impact from live migration. Performance
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parity is achieved through the use of WebAssembly, which also enables seamless execution across
the cloud-edge continuum in KPI 3. Similarly, confidential C-Cell execution is achieved with the in-
tegration with SCONE, as exemplified by the Sconified Pravega prototype, achieving KPI 4. C-Cells
also implement low-overhead migration, dynamic elastic scaling, and support for complex appli-
cations, thus fulfilling KPIs 2, 5, and 6. Finally, in this deliverable, we present the deployment on
heterogeneous clusters within KIO networks, fulfilling KPI 8.

4.3 Confidential C-Cells with TEE Integration

C-Cells are designed to run arbitrary applications in a sandboxed environment. In addition, to pro-
tect the sandboxed application from its host environment, thus protecting the confidentiality and
integrity of both the C-Cell and the application, C-Cells support being executed inside Intel SGX
enclaves. We implement a prototype of confidential C-Cells using SCONE’s lift-and-shift approach.
Since SCONE has additional features to enhance confidentiality and trust, such as centralized attes-
tation, network shield, and file system shield, a more complete approach can be considered.

In general, the confidential C-Cell is built as follows. First, we identified the feature incompati-
bilities. For example, early C-Cell adoption assumes a glibc-based interface, while SCONE is based
on musl-libc. Due to this migration from glibc to musl-libc, some system calls used by C-Cells are
not supported, so we replaced them with comparable alternatives. We apply this modifications di-
rectly on the C-Cell runtime’s source code, enabling greater compatibility. As a result of this process,
C-Cells with TEE support are finally achieved.

4.4 Heterogeneous deployment on the cloud-edge continuum

To support real-world deployments across the cloud-edge continuum, C-Cell-enabled applications
must support a variety of deployment modes on different hardware architectures. Using KIO’s
infrastructure, we implement support for C-Cells to be deployed and orchestrated using docker
compose and Kubernetes by packaging the WebAssembly runtime and core SGX dependencies in-
side regular OCI container images. On KIO’s testbed we use x86 servers with SGX-enabled VMs,
and illustrate how confidential and non-confidential C-Cells can co-exist.
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5 Reference Implementations

This section describes the design and implementation of two fully-fledged systems that use C-Cells
for different goals: (1) GRANNY for the dynamic management of scientific applications, and (2) Sconi-
fied Pravega for the secure execution of event-processing applications.

5.1 GRANNY

GRANNY executes multi-threaded and multi-process applications as a set of C-Cells (shown as circles
in Figure 2). A C-Cell represents a single thread of execution, and has its own mappings for code
and data: a multi-threaded application (OpenMP) is therefore a set of C-Cells with shared-memory
code and data mappings; a multi-process application (MPI) is a set of C-Cells with non-shared data

mappings.

Horizontal migration

D D E':Ij\, ',Iil\' E (1 c-Cell - 1 vCPU)
g = (@ C-Cell
!lioolloe
2 [:l |:| (WebAssembly)
@]\ ™/ o Granny state
E CE) (L)

App 1 App 3
VM A VM B VM C

Figure 2: GRANNY executes applications as sets of C-Cells

Each C-Cell runs in a single WebAssembly [6] module with its application code, and executes on
a vCPU in a VM. The GRANNY runtime decouples C-Cell state from OS kernel state, which makes
the snapshotting of C-Cells simpler and faster than traditional process checkpoints [7]. It also allows
GRANNY to execute multiple C-Cells within the same process (shown as different colors in Figure 2),
because WebAssembly modules are isolated from each other and the runtime. Each VM runs a single
instance of the GRANNY runtime, and there is also one cluster-wide GRANNY scheduler. Currently,
the scheduler applies very simple policies based on heuristics, but in the future it could be connected
to CLOUDSKIN’ learning plane for Al-enabled orchestration.

GRANNY uses the C-Cell abstraction and snapshots to implement management: it can spawn C-
Cells with thread semantics to vertically scale multi-threaded applications, and it can horizontally
migrate the snapshot of a C-Cell with process semantics. The GRANNY scheduler uses these man-
agement actions to implement dynamic scheduling policies: as shown in Figure 2, it can speed up
app 1 with the newly released vCPUs of VM A, improving utilization, or consolidate app 3 to VM C,
reducing fragmentation and improving locality.

5.1.1 C-Cell abstraction

Figure 3 shows the GRANNY architecture. A C-Cell executes as an OS thread inside the VM where
it is spawned, with application code deployed in an isolated WebAssembly module that only has
external access to pre-defined OpenMP, MPI and POSIX operations implemented by the GRANNY
runtime (the various backends in Figure 3). The GRANNY runtime backends are built on top of a
shared GRANNY runtime core that keeps the per-C-Cell state, and decouples backends from the OS.
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Figure 3: GRANNY architecture

Applications must be cross-compiled to WebAssembly [6], a memory-safe and platform-independent
binary instruction format that supports a wide range of programming languages. The use of We-
bAssembly allows C-Cells to execute side-by-side within one virtual address space, together with
the GRANNY runtime, while enforcing memory safety [8] and reducing interaction with the privi-
leged OS kernel. In addition to the file-system and network operations necessary for multi-process
applications, GRANNY only relies on the OS kernel to schedule threads and guarantee resource (CPU
and network) fairness.

WebAssembly code cannot, in general, interact with its host environment. In GRANNY, applica-
tion code can use control-points, C-Cells’ native trapping mechanism, to interact with the runtime.
A control-point is triggered by a call to one of the supported APIs, POSIX, MPI, and OpenMP, im-
plemented in the backends. Control-points come at no cost for developers and at little cost for the
runtime: they are injected by leaving the corresponding API symbol (e.g. MPI_Barrier) as undefined
during cross-compilation and marked as a function import [9]. The symbol is resolved at runtime and
triggers a WebAssembly context switch executed in tenths of cycles, similar to a function call [10].

The GRANNY runtime makes, whenever necessary, system calls to the underlying OS, e.g. to send
cross-VM messages or write to a file descriptor. It records these interactions to ensure that C-Cell state
can be encapsulated in a snapshot.

5.1.2 C-Cell implementation
Control-points. Our CLOUDSKIN prototype currently supports three backends:
¢ The MPI backend implements the standard MPI_x APlIs, e.g. MPI_Reduce [11] and provides
reliable C-Cell-to-C-Cell messaging. It uses in-memory message mailboxes for message recep-

tion, and the kernel’s network stack for cross-VM messaging. The GRANNY runtime maintains
consistent C-Cell addressing tables across C-Cell migrations.

* The OpenMP (OMP) backend implements the interface exposed by LLVM’s OpenMP runtime
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(1ibomp) after OpenMP pragmas have been expanded, e.g. __kmpc_fork_call [12]. For cor-
rect and safe OpenMP execution, the GRANNY runtime must carefully manage the shared and
private memory regions of different C-Cells.

e The POSIX backend implements WebAssembly’s standard system interface (WASI) [13]. The
adoption of WASI simplifies the effort of cross-compiling large codebases as we can stati-
cally link applications with WASI-aware libraries such as wasi-1libc [14]. The backend only
implements the symbols needed by compute-intensive applications, which are mostly file-
system APIs. To maintain a consistent C-Cell state and facilitate snapshots and migration, the
GRANNY runtime maps the file-descriptors used internally in WebAssembly code, to the OS
file-descriptors used in practice.

A
C-Cell C-Cell Tcp C-Cell C-Cell
(Process semantics) (Process semantics) . (Thread semantics) (Thread semantics)
Code & Data Code & Data Code & Data Code & Data
int i = 0;
char* b = ... char* b = ... <body> !
MPI_Bcast(*b); MPI_Bcast(*b); o AIPITERTIE GUY el
for (; i<10; i++)
A ‘ <body> .
Stack - Sstack | | stack 3 Stack
Heap : Heap Heap a Heap
.immap .....................
\ \ N7z -
\ e \ : e RS ~ PRA -
\ Phe Sy z . @ -7
= = a |
Process address space VM

Figure 4: C-Cells memory layout in a single GRANNY instance

Memory layout. Due to WebAssembly’s linear memory model [6], C-Cells have a simple memory
layout, shown in Figure 4, which facilitates spawning and snapshotting. A C-Cell occupies a con-
tiguous region of virtual memory with the code, data, a stack and a heap. Spatial isolation comes
from a combination of WebAssembly’s memory safety and guard pages, and is enforced by the We-
bAssembly runtime [15].

The main difference between a C-Cell executing with process semantics and with thread seman-
tics is their memory layout (red and blue C-Cells in Figure 4, respectively): C-Cells with processes
semantics have separate linear memories, with the same application mapped into them. To send
messages, the sender C-Cell indicates the buffer to be sent (Figure 4, @-red), and the MPI backend
in the CLOUDSKIN runtime decides if it is a local or a remote message. For a local message, the
runtime can directly enqueue the message metadata (@) and copy the buffer contents into the re-
ception buffer (@). For a remote message, the runtime will send the whole payload over TCP to the
appropriate CLOUDSKIN runtime instance (@).

C-Cells with thread semantics share a linear memory, and have separate stacks. When a C-Cell
creates new threads, such as with OpenMP #pragma omp for (Figure 4, @-blue), the GRANNY run-
time spawns a new C-Cell mapped to the same linear memory (®). To give each thread a separate
execution context, but maintain WebAssembly’s memory sandboxing, GRANNY allocates an area in
the parent’s heap for the child’s stack (@), and sets the child’s code entrypoint to the corresponding

Page 11 of 30



HORIZON - 101092646 CloudSkin
29/12/2025 RIA

OpenMP task (@). Additional care goes into maintaining shared variable visibility, as well as their
consistency.

Snapshots. C-Cells consequently have a simple memory layout, which means that their execution
state can be captured combining the span of the linear memory, together with the C-Cell state in the
GRANNY runtime (Figure 3). The combined linear memory and runtime state is what we call a C-Cell
snapshot. Having a concise snapshot representation for C-Cells is an essential requirement for mi-
gration. Since all state is contained in a snapshot, GRANNY does not require OS kernel modifications
to obtain a C-Cell’s full execution state. This is in contrast to general process checkpointing [7], which
must also extract process state from the OS kernel.

5.1.3 C-Cell Management

GRANNY performs management actions, vertical scaling, and horizontal migration by interrupting
application execution at well-defined control-points. This ensures GRANNY always operates with a
consistent application state. We next describe these operations in more detail.

(a) Interrupting C-Cells at control-points

GRANNY takes control over C-Cell execution at control-points, i.e. at every call to one of the sup-
ported runtime backend APIs (see Figure 3). GRANNY defines two types of control-points, regular
and barrier control-points, that enable the runtime core to perform different operations. At regular
control-points, such as calls to the POSIX API, the application state is not guaranteed to be consis-
tent, but this still allows GRANNY to send point-to-point messages or operate on shared memory.
In contrast, barrier control-points guarantee that the application state is consistent, i.e. no messages
are in-flight and no modifications to shared variables are pending to be synchronized. Therefore,
GRANNY can only perform management operations at barrier control-points.

Differentiating between regular and barrier control-points requires semantic knowledge of the
shared memory/message passing API, as well as control over its implementation. For example,
GRANNY’s MPI backend implementation of MPI_Barrier has a reduce phase in which all C-Cells
send messages to the C-Cell with the lowest MPI rank, and a broadcast phase in which all C-Cells
are notified that the barrier has completed. After the reduce phase, the C-Cell with the lowest MPI
rank can rely on the fact that there are no outstanding messages and has thus reached a consistent
state. A similar explanation, with shared memory synchronization instead of messages, applies to
GRANNY’s OpenMP backend implementation of #pragma omp barrier.

As a consequence, vertical scaling and horizontal migration in GRANNY is a co-operative process.
When a C-Cell triggers a barrier control-point, the runtime interacts with the scheduler and adds,
removes, or migrates C-Cells as indicated. In practice, barrier control-points are frequent enough,
so that their co-operative nature does not hinder the benefits in resource management, as we saw
extensively in D4.2.

(b) Vertical scaling

Implementing vertical scaling in GRANNY is straightforward if we take into account the memory
layout presented in Figure 4. To create a child C-Cell from a parent C-Cell, the runtime allocates the
child’s stack in the parent’s heap, and instantiates a new C-Cell on top of the same WebAssembly
linear memory, changing only the stack pointer. The child’s entrypoint is indicated as an index in the
WebAssembly module’s function table. We also add guard pages around each child’s stack to miti-
gate potential stack overflows (typical of various threading implementations in WebAssembly [16]).

Since vertical scaling happens during barrier control-points in OpenMP, the runtime can eas-
ily distribute the work across any C-Cells by simply setting the appropriate per-thread and global
variables in the OpenMP specification. We design a scheduling policy using vertical scaling and
showecase it in one of the use-case integrations.

(c) Horizontal migration

Figure 5 illustrates horizontal migration. The MPI backend gives each C-Cell a unique integer iden-
tifier, akin to the MPI rank, and implements messaging as a three-step process: it captures the send
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Figure 5: Horizontal migration overview

operation as a call to a backend operation such as MPI_Send (@); it copies the message into the re-
ceiving C-Cell’s mailbox within the target GRANNY runtime core (®); and it delivers the message
to the application by capturing (@), and potentially blocking, calls to a receive operation (which the
MPI backend matches to the corresponding mailbox, according to the MPI specification). Note that
C-Cells may also call other API backends, such as file writes via the POSIX backend (@). As previ-
ously introduced, the POSIX backend serves the request and keeps track of the mapping between
WebAssembly file descriptors and OS ones.

When C-Cells reach a barrier control-point (such as MPI_Barrier in Figure 5b), the runtime can
perform horizontal migrations safely. For example, in the case of MPI_Barrier, all C-Cells send a
BARRIER_JOIN message (@) to the zero-th MPI rank (C-Cell 0 in VM A in the example), and wait for a
BARRIER_DONE message before continuing. When the runtime for C-Cell 0 has received all messages,
it queries the scheduler for any horizontal migrations (@). The resource scheduler then applies the
scheduling policy and returns a migration plan (@). After all migrations have been performed (if
any), the runtime broadcasts a BARRIER_DONE message so all blocked C-Cells resume execution. In
our example, C-Cell 1 must be migrated from VM B to VM A.

To perform the migration, shown in Figure 5¢, the runtime in VM A distributes the migration plan
to the other runtimes involved in the execution (in this case the runtime in VM B), and all proceed
to individually prepare for the migration. For VM A, this means the runtime must create a new,
empty C-Cell 1, setup its mailbox mappings, and update the entry for C-Cell 1 on the mailbox of
C-Cell 0 (@). For the runtime in VM B, this means creating a snapshot of C-Cell 1, including any
runtime state, and terminating the old C-Cell 1 (@).

Once the migration has been prepared, the runtime in VM A can resume execution of C-Cell 0,
which broadcasts the BARRIER_DONE message to the updated mailboxes (@)). The runtime in VM A
can also restore C-Cell 1 from the received snapshot, re-construct the file descriptor tables, and re-
sume execution where it left off, i.e. blocked waiting for a BARRIER_DONE (@B)). Since the restored
C-Cell 1 uses the updated mailboxes, it has the message and resumes execution (). In D4.2 we
showcased two scheduling policies using horizontal migration and their impact on fragmentation
and cloud costs.
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5.2 Sconified Pravega

Pravega, as one of the solutions for data processing architecture, is not equipped with the confidential
computing approach. We leverage the SCONE framework with its lift-and-shift approach to enable
Pravega to be able to run on top of the Trusted Execution Environment (TEE), such as Intel SGX.
Essentially, SCONE’s toolchain converts Pravega to run on top of SCONE’s runtime rather than the
native one. This runtime is designed to leverage TEE’s hardware features, such as memory isolation,
integrity, and encryption, on by default, out of the box. A powerful adversary would not be able to
inspect Pravega’s memory footprint since it now runs with a TEE.

Given how integral Pravega plays a role in the data distribution, a powerful adversary (such
as cloud service providers with root and physical access to the server) could steal confidential data
on where Pravega is deployed. Encrypting the data at rest could prevent those; however, it is still
susceptible to rollback attacks. Skilled adversaries may be able to inspect the memory region of
running Pravega and infer something from it. With the introduction of TEE, the latter would be
prevented, hence one can trust the execution. SCONE introduces some features that can extend the
trust to also include the storage and network connection with its filesystem- and network- shield,
respectively. Those protection shields work transparently in the C-library at the system call level.
A shielding layer encrypts the data before writing it out to the interfaces, as well as decrypts the
data transparently after reading. Therefore, both data in transit and data at rest could be encrypted,
thereby extending trust to them. In the future, a comprehensive solution could also be included in
this aspect.

Pravega consists of many components, as shown in Table 3. For the current deliverable, we focus
solely on the parts that are developed by DELL: The Controller and Segment Store. The Controller
is responsible for providing the abstraction of the Stream and handling its lifecycle. Segment Store
manages the Stream segments internally with respect to modifying the contents. Both are an integral
part of the Pravega.

The rest of the components are external projects. We assume that the deployment and execution
of external project components are done in a trusted way. Zookeeper and Bookkeeper are used by
Pravega in order to handle coordination and journaling. HDEFS is a file system that stores data in a
distributed way. Pravega may be used in tandem with other open source tools that are outside of the
scope, such as Hadoop, Flink, etc.

Table 3: Status of Pravega Components in SCONE Environment

Pravega Component | Previous Status | Current Status

Controller Vanilla Sconified

Segment Store Vanilla Sconified

Zookeeper Vanilla Assumed to be trusted (external project)
Bookkeeper Vanilla Assumed to be trusted (external project)
HDEFS Vanilla Assumed to be trusted (external project)

5.2.1 Building Sconified Pravega

The goal of using SCONE is to make minimal modifications to the original application to make it
compatible with the confidential computing capabilities using TEE. Both the Controller and Segment
Store are based on Java; therefore, we first convert the Java runtime. By default, the Java runtime we
used is dynamically linked with the glibc. We modify the runtime’s header (in the binary) so that it
uses SCONE libc and is therefore compatible with the TEE.

The second step is to ensure that both the Controller and Segment Store do not violate restrictions
in the TEE and SCONE runtime. For example, using asynchronous input/output with the kernel is
not supported. Getting OS-wide information from the /proc file system is restricted. Both restrictions
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Table 4: Status of Pravega Components in SCONE Environment

Configuration Description Sample
SCONE_SLOTS System calls queue length 384
SCONE_VERSION | Flag to enable environment launch information 1
SCONE_TCS Number of Thread Control Structures 48
SCONE_MODE Execution mode in SCONE (Hardware/Simulation) hw
SCONE_HEAP Heap memory allocated to the enclave 32G

SCONE_ESPINS Idle iterations the in-enclave scheduler does before it exists the | 1000000
enclave and goes to sleep
SCONE_SSPINS Backoff behaviour on the enclave scheduler when waiting for a | 500
system call invocation before it goes to sleep
SCONE_SSLEEP Amount of sleeping when there is no system call invocation 1

are there to protect the application from possible attack , such as from kernel. Fortunately, after
thorough analysis, there is no part of the Pravega code to date that violates this restriction. This fact
allows us to convert the Controller and Segment Store with minimal changes.

However, in the default configuration, certain fields require adjustment. For example, one that
sets up the maximum cache size. In a vanilla implementation, the application will allocate the maxi-
mum cache size in the memory and immediately release it. At this point, the application cooperates
with the kernel to manage such memory allocation. In a limited memory environment, such as in the
TEE, we have to be conservative in terms of declaring memory allocation. Therefore, we set up the
maximum cache size to be equal to the heap size that the enclave can handle.

5.2.2 Deploying Sconified Pravega

A Pravega cluster requires a set of components such as Zookeeper, Bookkeeper, tier storage, con-
troller, and Segment Store. As mentioned in Table 3, we focus on deploying the Controller and Seg-
ment store in the TEE. Those two are pipelined into SCONE’s toolchain, and we produced Docker
images for them, including manually configuring them. Mandatory configuration includes adding
the SGX drivers, so the SGX Enclave most be added to the devices and the SGX environment vari-
ables most be added to the container. Table 4 shows the specific SCONE configuration that should be
in the deployment docker compose yaml file.

The following is an example of the SCONE configuration in the Docker Compose deployment
file. The complete file and other deployment files are available on Github repository.?

Listing 1: Example of SCONE configuration file

devices:
— /dev/sgx_enclave:/dev/sgx_enclave
environment:
SCONE_SLOTS: 384
SCONE_VERSION: 1
SCONE_TCS: 48
SCONE MODE: hw
SCONE_HEAP: 32G
SCONE_ESPINS: 1000000
SCONE_SSPINS: 500
SCONE_SSLEEP: 1
volumes:
- ./sgx-musl-controller.conf:/ etc/sgx—musl. conf

Shttps://github.com/cloudskin-eu/scone-pravega/
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Figure 6: Dynamic scheduling policies implemented for their use with GRANNY (Different colors
indicate different jobs.)

6 Evaluation Summary and KPIs

We now describe the evaluation result and the validation activities to demonstrate the fulfilment of
KPIs for both, GRANNY and Sconified Pravega.

6.1 GRANNY

As part of GRANNY’s evaluation we implement three scheduling policies, described in the following
sections, to improve the utilization and performance of cloud-based multi-process and multi-thread
scientific applications. The policies use GRANNY’s support for vertical scaling and horizontal migra-
tion, and treat the scheduled applications as black boxes, i.e. without knowledge of future applica-
tions, their distribution of sizes, or their expected duration. These policies are deliberately simple,
and could be extended with more complex policies provided by the learning plane from WP5.

As baselines, we compare against two cloud resource schedulers, batch and slurm, that mirror
the behaviour of Azure Batch [17] and Slurm [18], respectively. Unless otherwise stated, batch and
slurm execute MPI applications with OpenMPI v4.1 [19] and OpenMP ones with libomp v4.5 [20].
We deploy GRANNY and any baselines on a Kubernetes cluster on Azure. The cluster consists of
Standard_D8_v5 VMs [21] with 8 vCPU cores and 32 GB of memory. We deploy the resource sched-
uler in a separate VM in the same cluster.

(a) Improving locality with compaction policy

When scheduling MPI applications, existing cloud schedulers face a utilization/locality trade-off:
they can either assign available vCPUs to an MPI application to achieve high utilization, or assign an
entire VM to an MPI application to achieve high locality at the expense of having unused vCPUs in
those VMs. The former reduces queue wait times for applications, but it may increase execution time,
because applications may have to communicate across different VMs; the latter optimizes execution
time at the cost of increasing queuing time due to the wait for an available VM of the required size.

Instead, we adopt a compaction policy (see Figure 6a) that uses GRANNY to combine the benefits
of both approaches. The scheduler first eagerly deploys MPI applications on any available vCPUs,
which results in the highly fragmented green application in our example. When vCPUs are later
released (e.g. the blue application terminates), the scheduler performs horizontal migration of C-
Cells to increase the locality of executing applications. This results in less cross-VM communication,
which speeds up the green application. We define our fragmentation metric as the total number of C-
Cell-to-C-Cell connections that cross a VM boundary in an application. When the application reaches
a barrier control-point, the scheduler checks if it can reduce its cross-VM links by performing any set
of horizontal migrations.

Figure 7 shows various performance metrics, as we increase the number of VMs and the number
of MPI applications in the trace. Figure 7a shows that the compaction policy improves end-to-end
execution time (makespan) by up to 20%. Using compaction, GRANNY always improves makespan
across all baselines and cluster sizes. To show the compaction policy in action, Figure 7c and Fig-
ure 7d plot the time-series of idle vCPUs (as a proxy for cluster utilization) and cross-VM network
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Figure 8: Improving utilization with elastic policy

links (as a proxy for locality) for the (32 VMs, 100 jobs) execution. We see that, differently to Slurm,
GRANNY deliberately leaves a percentage of vCPUs idle corresponding to a target utilization (5%
in this experiment). GRANNY can use these spare vCPUs to defragment applications at runtime
by performing horizontal migrations, achieving consistently 25% less fragmentation than Slurm. In
fact, GRANNY, with only 5% idle vCPUs, is closer in terms of fragmentation to Azure Batch, which
behaves optimally with respect to this metric but leaves 30% of vCPUs unused.

Figure 7b shows that this reduction in fragmentation at high cluster utilization has a direct impact
on job completion time (JCT). For the (32 VMs, 100 jobs) execution, GRANNY improves median and
tail JCT by up to 20%. We conclude that the compaction policy enables GRANNY to exploit the
utilization/locality trade-off more effectively compared to Azure Batch and Slurm.

(b) Improving utilization with elastic policy

Even with a compaction policy, some cluster resources remain idle due to the nature of bin-packing
scheduling. VMs may have some spare capacity that is insufficient to deploy the next application
in the queue. This is particularly true with OpenMP applications that cannot be distributed across
VMs.

In response, we introduce an elastic policy (see Figure 6b). When there is spare capacity in a
VM (Figure 6b-a) and an OpenMP application reaches a barrier control point, the scheduler triggers
a vertical scale-up to utilize these idle resources (Figure 6b-b). This improves cluster utilization and
application performance by exploiting extra parallelism. Our policy is careful to not mistake fork-
join patterns of co-located OpenMP application with truly available resources by keeping track of the
OMP_NUM_THREADS environment variable.

We execute a trace of OpenMP applications as jobs, and each application executes a large-scale
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version of the p2p ParRes OpenMP kernel [22], which performs a compute-intensive pipelined par-
allel algorithm on a large matrix, and requires a different number of OpenMP threads. In this experi-
ment, the baselines (batch and slurm) execute applications using 1ibomp [20]. We include an additional
baseline, granny-no-elastic, which corresponds to slurm using GRANNY’s OpenMP backend.

Figure 8a shows that GRANNY improves makespan by up to 60% compared to the native base-
lines and GRANNY without the elastic policy (granny-no-elastic). This confirms that the performance
improvements come from the policy. Indeed, we can assert that GRANNY reduces the idle CPU cores
in the cluster by up to 30% (Figure 8b), and it uses these extra cores to improve median and tail JCT
by up to 50% (Figure 8c).

This large performance gap can be understood when considering how many compute resources
are left idle by the native baselines. Figure 8d shows a time series of the percentage of idle vCPUs
when running 200 jobs on a 32-VM cluster. Azure Batch and Slurm, even when the job queue is not
empty, consistently leave 60% and 40% of vCPUs idle. This is due to multiple reasons: (i) OpenMP
applications have fixed parallelism; (i) it is not possible to distribute them across VMs; and (iii) in
the case of Azure Batch, it is not possible to run different applications on the same VM concurrently.
By vertically scaling-up, GRANNY maintains the fraction of idle vCPUs at around 20% while there
are still pending jobs.

CLOUDSKIN’s improvements in terms of JCT are partly due to the fact that our OpenMP workload
always benefits from increasing its parallelism. In a real deployment, an elastic policy should be
accompanied by runtime profiling to determine when a workload exhausts its parallelism.

(c) Ephemeral VMs with spot policy

Compute-intensive applications may be deployed on a pool of spot VMs to benefit from lower costs.
This introduces the challenge of handling partial failures, because spot VMs are withdrawn by the
cloud provider after a short grace period.

Figure 6¢ shows our spot policy. We follow a two-part horizontal migration approach: (1) when
the cloud provider notifies the scheduler of an upcoming spot VM eviction (Figure 6c-a), the sched-
uler stops scheduling C-Cells to that VM; (2) when a C-Cell running on the to-be-evicted VM reaches
a barrier control-point (e.g. MPI_Barrier or #pragma omp barrier), the resource manger tries to re-
schedule it on the remaining VMs (Figure 6c-b). If there are insufficient resources, snapshots are
taken of all C-Cells in the application, and they are terminated. Interrupted applications are then
added to the beginning of the scheduler’s queue.

6.2 Sconified Pravega

Modern computer-assisted surgery (CAS) systems increasingly rely on real-time video analytics to
assist surgeons during complex procedures. In CLOUDSKIN, the National Center for Tumor Dis-
eases (NCT) requires ingesting high-definition endoscopic video streams, performing Al-driven in-
ference for tasks such as instrument detection and surgical phase recognition, and storing video data
durably for later analysis and model training. These operations are highly latency-sensitive: any
delay in processing frames can compromise surgical decision-making. To address these challenges,
we developed a Proof of Concept (PoC) within the CLOUDSKIN project that leverages Pravega as the
backbone for elastic and durable video stream storage, combined with GStreamer for ingestion and
containerized Al models orchestrated across the Cloud-Edge continuum (see D2.3). This architec-
ture demonstrated strong performance and simplified the development and deployment of NCT Al
models for real-time inference, validating the feasibility of streaming-based approaches for surgical
workflows.

However, healthcare applications impose stringent requirements on data security and confidential-
ity. Surgical video streams often contain sensitive patient information, and compliance with regu-
lations such as GDPR and HIPAA demands robust protection of data in use, at rest, and in tran-
sit. While the initial PoC focused on performance and elasticity, it did not address confidential-
ity guarantees against privileged insiders or untrusted infrastructure. To overcome this limitation,
we integrated SCONE, a confidential container technology that leverages Trusted Execution Envi-
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ronments (TEEs) to provide hardware-enforced isolation and attestation. SCONE enables existing
containerized applications to run inside secure enclaves without code modifications, ensuring that
sensitive data and Al models remain protected even in multi-tenant or cloud environments.

This section evaluates the performance impact of “sconifying” Pravega, i.e. running its server-
side components inside SCONE-enabled confidential containers—compared to non-confidential de-
ployments.* Specifically, we measure the 1/O performance overhead introduced by TEEs under
different streaming workloads, using OpenMessaging Benchmark (OMB) to quantify latency and
throughput across varying event sizes and production rates. Our goal is to determine whether the
confidentiality guarantees provided by SCONE can be achieved without compromising the real-time
requirements of surgical video analytics. The results presented here offer insights into the trade-offs
between security and performance in latency-critical healthcare scenarios, guiding future designs for
secure, scalable CAS platforms.

Methodology

This experiment relies on benchmarking different streaming workloads on two Pravega server in-
stances with different levels of security and compares the output metrics to have a better under-
standing of the impact of secure computations on distributed streaming platforms. The following
are the necessary elements:

¢ Secured Pravega: also known as Sconified Pravega. It is a Pravega server instance running in
an Intel SGX TEE by using Scone runtime and network shield features.

* Standard Pravega: it is a Pravega server instance without any special security configuration.

* Benchmark Client: Standard OpenMessaging Benchmark (OMB) [24] client, which is a bench-
marking framework designed to evaluate the performance of distributed messaging systems.
OMB provides a standardized way to compare event streaming systems by measuring key met-
rics such as throughput, latency, and resource utilization under various workload scenarios.

Figure 9 shows how these elements interact with each other. All of them are running in separate
Docker containers. Both Pravega instances are running on the same server, but not at the same time,
when running the test case, the correct instance was turning on and at the end turning off. Sconified
Pravega is running in a TEE (Intel SGX) and using a Network Shield, which provides encryption and
an application-level firewall that denies untrusted connections.

As mentioned above, the Benchmark client uses different configurations to produce different
streaming workloads. The following are the configuration options, permuting these configurations
produced the 12 test cases considered in this experiment:

* Production rate: 100, 1000 and 10000 events per second.

¢ Event size: 100B, 1KB, 10KB and 100KB. Payload file sizes are generated from the default pay-
load files in the OpenMessaging Benchmark tool.

The OpenMessaging Benchmark number of messages or events sent varies depending on the
production rate, but is not always the same even using the same configuration. The following are the
default configuration for all test cases:

* 5 minutes benchmarking and 1 minute warmup.
* No compression or encryption.
* 1 topic and 1 partition per topic.

* Retention policy of 10 MB.

“The experiments in this section are a continuation of our previous work sconifying the Pravega client [23].
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Figure 9: Experiment workflow: A OpenMessaging Benchmark client sending messages to two
Pravega instances, one secured and one standard. Pravega instances are running on the same server
but not at the same time meanwhile the Benchmark client is running on their own server.

Figure 10: KIO infrastructure for executing the Sconified Pravega experiments.

Metrics

The following is a list and brief description of the metrics considered in this experiment. Most of these
metrics are derived from the OpenMessaging Benchmark tool, which generates a JSON-formatted
output file containing various measured and computed variables collected during the benchmarking
process.

¢ 50th Percentile Write Latency: Represents the median latency experienced by the publisher
when writing messages.

¢ 75th Percentile Write Latency: Indicates the latency below which 75% of the write operations
fall. This metric helps identify moderate tail latencies.

* 95th Percentile Write Latency: Reflects the latency threshold below which 95% of the write
operations occur, highlighting higher-end tail latencies.
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Figure 11: CDF plots show write latencies (logarithmic scale on the X-axis) against percentiles (Y-
axis) for test cases with a producer rate of 100 events per second across varying event sizes. The
results indicate that workloads on the standard Pravega instance achieve lower latencies compared
to those on the secured instance. Notably, the 90th percentile latency for the standard Pravega is
approximately 62% lower than that of the secured configuration.

* 99th Percentile Write Latency: Represents the latency below which 99% of the write operations
fall, useful for understanding worst-case performance scenarios.

¢ Latency Distribution (CDF): A cumulative distribution function (CDF) of all recorded write
latencies, providing a comprehensive view of latency behavior across the entire benchmark
run.

¢ Throughput (MB/s): Defined as the total volume of data successfully published divided by the
total execution time, excluding the warm-up period. Throughput is measured in megabytes per
second (MB/s) and is computed using the total number of bytes published (from a modified
version of the OpenMessaging Benchmark) and the elapsed time, determined by timestamps
recorded before and after the benchmark execution.

Test Environment

The current virtualization environment consists of a VMware vSphere 8 cluster comprising three
physical hosts. Each host operates under VMware ESXi 8 and participates in a unified resource
pool managed through vCenter. The cluster is configured with EVC CPU Mode: Intel “Sapphire
Rapids” Generation, ensuring full compatibility and seamless vMotion operations across all hosts.
EVC Graphics Mode (vSGA) is also enabled, providing virtualized GPU support for workloads that
require graphical acceleration.

* Host Configuration: Each host in the cluster is based on the Cisco UCSC-C240-M7SX platform,
delivering enterprise-grade performance and reliability. The nodes are equipped with Intel
Xeon Platinum 8458P processors, offering 176 logical processors per host. Each server has 8
physical NICs, providing redundancy and high network throughput for virtualized workloads.
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Figure 12: CDF plots show write latencies (logarithmic scale on the X-axis) against percentiles (Y-
axis) for test cases with a producer rate of 1,000 events per second across varying event sizes. The
results indicate that workloads on the standard Pravega instance achieve lower latencies compared
to those on the secured instance. Notably, the 90th percentile latency for the standard Pravega is
approximately 72% lower than that of the secured configuration. Additionally, it can be seen on
event size of 100KB, the secured Pravega begins to exhibit performance degradation due to the high

volume of data transmitted per second.

All nodes are in a Connected state within vCenter, ensuring full participation in cluster-level
resource management and HA /DRS operations.

Security and SGX Capabilities: The Intel Xeon Platinum 8458P CPUs feature Intel Software
Guard Extensions (SGX), enabling secure enclaves for sensitive workloads. SGX provides
hardware-based memory encryption that isolates specific application code and data in memory,
protecting it from unauthorized access or modification even if the system software is compro-
mised. This capability is especially beneficial for secure data processing, confidential comput-
ing, and regulated workloads where data privacy is critical.

On top of the vSphere cluster, several virtual machines are configured with SGX passthrough
to directly leverage the underlying CPU enclave capabilities. These VMs operate within iso-
lated network segments, ensuring strict separation from general-purpose traffic and minimiz-
ing the attack surface. Connectivity to external environments is tightly controlled, allowing
only predefined and secured communication channels. This design enables secure data pro-
cessing workloads —such as cryptographic operations, confidential analytics, or trusted execu-
tion environments— to run in compliance with high-security and privacy standards.

* Resource Summary

— CPU resources: Total cluster capacity of 712.8 GHz for workloads.

— Memory resources: Total of 3,071 GB for scaling virtual machines or deploying new work-
loads.
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Figure 13: CDF plots show write latencies (logarithmic scale on the X-axis) against percentiles (Y-
axis) for test cases with a producer rate of 10,000 events per second across varying event sizes. The
results indicate that workloads on the standard Pravega instance consistently achieve lower latencies
compared to those on the secured instance. Notably, the 90th percentile latency for the standard
Pravega is approximately 63% lower than that of the secured configuration. Additionally, it can be
observed that when the event size of 100KB, the system begins to exhibit performance degradation
due to the high volume of data transmitted per second.

— Storage resources: Shared storage capacity of 21,739 GB providing ample space for VM
data, snapshots, and future growth.

Benchmarking Results

A benchmark was set using 12 use cases, along with their respective configurations and metrics,
on the two previously mentioned Pravega server instances (standard and secured with SCONE).
Overall, the standard Pravega instance demonstrates lower write latencies compared to the secured
one. However, it is essential to evaluate this latency degradation in different scenarios and determine
under which conditions it remains acceptable.

Figure 11 illustrates the results for messages transmitted at a rate of 100 events per second, repre-
senting a relatively small data load. The plots show that workloads on the standard Pravega instance
exhibit slightly lower write latency compared to those on the secured instance. Specifically, the 95th
percentile latency for the standard Pravega is approximately 62% lower than that of the secured
Pravega. This difference is substantial, yet the secured configuration remains viable for use cases
requiring low latency, such as NCT.

Figure 12 continues to demonstrate the performance advantage of the standard Pravega instance,
with an even greater disparity. At a message rate of 1,000 events per second, the 95th percentile
latency for the standard Pravega is roughly 72% lower than that of the secured instance. Further-
more, when the event size reaches 100KB, the secured Pravega instance begins to exhibit noticeable
performance degradation—a factor that can be critical during system design.

Finally, Figure 13 shows the results for a producer rate of 10,000 events per second, and it reveals
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Figure 14: The throughout during benchmarking is almost the same for secured and standard
Pravega instances except for the last use case (event size 100KB and 10, 000e/s) supporting the per-
formance degradation idea.

a similar trend, though the gap narrows compared to the previous scenario. Here, the standard
Pravega instance achieves approximately 63% lower latency at the 95th percentile than the secured
instance. Additionally, performance degradation for messages with an event size of 100 KB becomes
more pronounced and affects both the secured and standard Pravega configurations.

Despite the observed differences in latency, throughput remains nearly identical in all use cases
without performance degradation, as shown in Figure 14. This indicates that the secured Pravega
instance can process the same volume of work per unit of time as the standard one under these
conditions. However, in the final use case (event size of 100KB and a production rate of 10,000
events per second), throughput decreases for both Pravega instances, supporting the notion that
system performance degrades when handling high volumes of data transmission per second.

The benchmark results indicate that while the standard Pravega instances consistently achieve
lower latency compared to the secured ones, both configurations maintain equivalent throughput.
This suggests that the security mechanisms integrated into the secured Pravega instance introduce
additional processing overhead, which impacts response time without reducing overall data-handling
capacity. Consequently, the performance trade-off primarily affects latency-sensitive applications,
whereas throughput-driven workloads remain largely unaffected. These findings highlight that se-
curity can be incorporated without compromising scalability, although its impact on real-time re-
sponsiveness must be carefully considered in latency-critical scenarios.

6.3 Summary of achieved KPIs

In this section we have presented empirical evidence, in the form of reproducible experiments, that
CLOUDSKIN's execution layer achieves the project’s KPIs. In particular, Table 5 revisits the high-level
KPI table presented in Table 2 and presents them in-relation to the results shown in this section.

In summary, throughout the different deliverables in WP4 we have demonstrated that C-Cells
support execution of complex applications across the cloud-edge continuum at near-native speed and
additional confidential C-Cell execution comes at moderate runtime overhead. C-Cells low-overhead
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KPI Description WP4 Contribution

KPI1 | Performance parity between instrumented and | C-Cells execute MPI and OpenMP applications

non-instrumented workloads. at native speed (see Figure 7).

KPI2 | Transparent migration C-Cell migration enables high-locality (see Fig-
ure 7) and high-elasticity (Figure 8) without
overheads.

KPI3 | Heterogeneous execution C-Cells can execute in ephemeral spot VMs (see
Figure 6c), regular X86 servers, and SGX en-
claves (see Figure 11.

KPI4 | Trusted execution with minimal overhead. Confidential C-Cells can process streaming
messages with limited overhead (see Figure 12).

KPI5 | Support for complex applications. Distributed C-Cells can execute the LAMMPS
molecule dynamic’s simulator (see Figure 7).

KPI6 | Dynamic elastic scaling. Vertical scaling of C-Cells executing OpenMP
jobs (see Figure 8).

KPI8 | Real-world testbed deployment. Most experiments in this section are deployed
on KIO's testbed.

Table 5: Demonstration of KPIs based on experimental results

snapshot-restore mechanisms enable efficient live migration and vertical scaling, unlocking more
efficiency, utilization, and performance through C-Cell-aware scheduling and orchestration policies.
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7 Use Case Integration

D5.4 covers the integration between technical work-packages and all industrial use-cases. D5.4 de-
scribes each use-case in detail, provides a high-level overview of its interacting components, and
includes an in-depth evaluation. In this deliverable we provide a brief overview of the use-cases that
interact more closely with WP4, and defer the reader to D5.4 for further details.

7.1 Metabolomics

In the metabolomics use-case, we build an image processing pipeline that performs an image similar-
ity search on private medical data without leaking the database that the image is compared against,
which also contains private images. We achieve this through a combination of confidential C-Cells,
to guarantee the confidentiality of the processed data, and an OpenMP job using a pool of parallel
C-Cells to adapt, elastically, to the available resources in the underlying testbed.

The first part of the pipeline uses a confidential C-Cell to ingest a dataset of private medical im-
ages and generate intermediate embeddings. These embeddings, as argued in D5.4, provide enough
anonymization to protect the confidentiality of the data owners. Once anonymized, this data can be
ingested by a pool of parallel C-Cells operating on shared memory to maximize throughput. This
pool is, under-the-hood, an OpenMP job with elastic scaling, where each C-Cell executes with thread
semantics and performs a k-nearest-neighbour search on a batch of images.

The whole pipeline is deployed on the KIO cloud-edge testbed in a server with Intel SGX support.
The communication between different stages in the pipeline happens through object storage, using
MinlO. The elastic scaling of the OpenMP job is done based on utilization metrics of the host system.
Important metrics of the pipeline execution are published to a Grafana monitor for visualization.

7.2 Computer-assisted surgery (CAS)

Computer-assisted surgery is one such case in which not only is the data sensitive, but also the
integrity of the execution is of the highest importance. By running it inside TEE, both can be guar-
anteed. At the moment, we successfully leveraged SCONE’s lift-and-shift approach to enable confi-
dential computing in the Surgery use case in two frameworks: ROS (Robot Operating System) and
GStreamer (multimedia stream framework).

The ROS framework is a middleware suite designed to work with robotic infrastructure. In
computer-assisted surgery, the inference output could be piped to a robotic hand. However, since
the inference is still performed at the edge node, it leaves it in an exposed position where attacks
may be launched. Therefore, we opt to make the inference process trustworthy by deploying and
running it in an Intel SGX enclave. The model is offline and embedded in a docker image. We built
the ROS node, capable of doing confidential inference. The result will then be forwarded to the
subscribers, such as image output or robotic hands.

For completeness, we also protected the inference when using the GStreamer framework. Gstreamer
is a pipeline-based multimedia framework that allows us to manipulate streaming data. In the
Surgery use case, it takes a video source as an input, performs inference to detect liver segmentation,
and produces a video output. Complementary to our previous implementation, which protected
only the inference part, here we ensure the entire process runs within a TEE. Using SCONE, both the
main application (gst) and the inference plugin will be loaded into the same memory region, thus
the same level of protection.
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8 Open-Source Releases and Maintenance Plan
8.1 GRANNY

GRANNY is released as an extension to the Faasm serverless runtime, and upstreamed to the parent
repository with version v0.27.0°. We include a screenshot of the Faasm release in ??.

The Faasm serverless runtime has numerous contributors, almost a thousand stars on GitHub,
and has been actively maintained for the last seven years. By integrating GRANNY into a larger
open-source project, we increase its potential outreach and ease its maintenance. GRANNY’s main
contribution to Faasm is contained in a library called faabric that manages the communication be-
tween C-Cells, and their shared memory accesses.

Newer CLOUDSKIN features have also been upstreamed to Faasm. In the interest of dissemina-
tion, we make a fork of the Faasm runtime under the cloudskin-eu organization. We fork at Faasm'’s
version v0.33.0, and include a screenshot of the repository’s read-me file in ??.

8.2 Sconified Pravega

The integration of Sconified Pravega into the broader ecosystem is designed with long-term usabil-
ity in mind. Our objective is to ensure that the enhancements introduced through this effort remain
accessible to the community and continue to align with evolving security and performance require-
ments. Although a formal roadmap has not been defined at this stage, the project is structured to
encourage future contributions, updates, and community-driven maintenance. Comprehensive doc-
umentation and integration guidelines are available in its GitHub repository®, enabling developers
and organizations to adopt and extend the solution as needed. By embracing open-source principles,
we expect this work to serve as a strong foundation for ongoing innovation and collaboration within
the Pravega community.

Shttps://github.com/faasm/faasm
®https://github.com/cloudskin-eu/scone-pravega/
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9 Conclusions

In this deliverable, we have presented the final design and reference implementation of CLOUDSKIN’
execution layer. At the core of this execution layer lie C-Cells, a universal lightweight execution sand-
box based on WebAssembly. C-Cells can execute unmodified code from a variety of programming
languages, in heterogeneous hardware like Intel SGX enclaves, with minimal performance overhead.
Groups of C-Cells can be orchestrated to send messages to each other, or operate on regions of shared
memory. We use these features of C-Cells to support execution of more complex applications, in-
cluding scientific applications using MPI and OpenMP, and streaming applications with enhanced
privacy guarantees.

This deliverable acts as the colophon of WP4, and complements the previous deliverables D4.1
and D4.2 where we introduced the initial C-Cell design, and the initial evaluation of message passing
and shared memory, respectively. This deliverable presents the final reference implementation of all
components, additional evaluation results, and the open-source maintenance plan.
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