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1 Executive summary

This deliverable, Deliverable D5.2 "Learning methods for Infrastructure and Workload manage-
ment", presents the updated specifications of the Learning Plane’s architecture, along with demon-
stration of the initial prototyping implementations on the project use cases, bringing forward the
proposed implementations published in previous deliverables Deliverable D5.1 and D2.4. To be
specific, this deliverable provides detailed specification and explanations of the Learning Plane’s
main component; the ML-based methods towards workload analysis, characterization, and the mod-
elling and prediction methods; plus the description of the telemetry components from the Data Plane
used for data retrieval to the Learning Plane.
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2 Introduction

The progress on the Learning Plane development and evaluation involves the design of the Data
Connector specifying the functionalities for modelling and prediction of the acquired telemetry to-
wards recommendations, on different environments for computing. In the CLOUDSKIN project,
Task 5.2 is in charge of producing this design, in an iterative-prototyping methodology, defining at
this time the updated architecture of the connector and its implementation. Following M18, Task 5.3
will proceed with the instrumentation and deployment of the connector, being able to iterate over the
modeling algorithms, the initial adaption of the APIs towards novel use cases, and the publication
of the specification towards the general public. During this process, the advances of Task 5.4 to 5.7
also contribute to the definition of the Learning Plane and the expected contents (models and algo-
rithms, along with the related environments such as execution and storage of them), also advancing
the machine learning models to be used in such use cases, as the primary purpose of the Learning
Plane.

2.1 Development progress

The first design of the Learning Plane is reported on D2.1 and D5.1, in this report we updated the
Learning plane design as a function of Data connector(in Section 3) and its implementation. Then
for the development stage (Tasks 5.2) and the deployment stage (T5.3), we described the progress
of “Workload Characterization - ML-based methods for environment modelling” (in Section 4) and
early advance of “Instrumentation and deployment - Instrumentation and Data Retrieval in the
Learning Plane” (in Section 5). During the following months, the use cases will integrate the T5.1,
T5.2 and T5.3 algorithms with the architecture and the technologies provided by all involved CLOUD-
SKIN partners. The current progress of the platform and the use case are reported to D2.3. Table 1
shows the stages, along with the corresponding efforts and WP5 tasks, also the sections of this deliv-
erable where progress and experiments are provided.

Stage 0 Stage 1 Stage 2 Stage 3
Efforts Learning Plane Design Workload Characterization Instrumentation & Deployment Integration with Use Cases

Ref. Tasks T2.1, T5.1 T5.1, T5.2 T5.3 T5.4, T5.5, T5.6, T5.7
Report Detail D2.1, D5.1 and Section 3 Section 4 Early advances: Section 5 D2.3: Section 5
Experiments NA Section 4 Preparing D2.3: Section 5

Table 1: Relation of efforts, tasks and reporting sections in this deliverable.

Tasks T5.4 to T5.7 are currently ongoing (described in D2.3 Section 5), focusing on the develop-
ment of specific details for each use case, while preparing individual learning methods towards being
integrated or collected by the learning plane when properly implemented into data connectors. The
following subsection introduces the current status of machine learning methods for each use case, to
be described in this report.
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3 Updated implementation of the learning plane

This section extends “Learning Plane design and integration” from Deliverable D2.1 and “Design
and Early Prototype of the Learning Plane” from Deliverable D5.1. For the fundamental details on
the initial design and road-map of the Learning Plane with respect to the rest of the architecture, refer
to those deliverables.

3.1 Learning Plane Functionalities

The designed Learning Plane is being integrated by technologies capable to fulfill the different func-
tionalities with regard to retrieving telemetry, modeling the system, managing the catalog of models
and serving recommendations, predictions and forecasting. For such, the principal functionalities
are listed as follows:

• Modelling the System: This functionality involves the set of algorithms for system modelling
and characterization. For this, different methods are being explored and benchmarked, start-
ing from naïve methods (heuristics) to statistical and machine learning methods that we have
researched previously and then adapt them for use case scenarios, such as ThetaScan [1] and
AI4DL [2](Introduced in D5.1). Proposed ThetaScan and AI4DL can detect the statistical prop-
erties in the workloads as multi-variate time-series, and also currently we are exploring time-
series-based neural networks for workload predictions such as Transformers and Long-Short
Term Memory(LSTM). Current efforts are focused on accurate models detecting unexpected
and extreme changes in workload behaviour with respect to resource demand, i.e., peaks that
could affect the quality of service.

• Model Federation and Storage: For model federation, this functionality involves the distri-
bution of the models sharing and aggregation. In this project, we focus on using models for
resource provisioning and scheduling. Monolithic models are now generated to utilize data
from aggregated monitoring stack to advice holistic scheduling among the platforms. Feder-
ated models will be generated in the scenario of resource provisioning, where small models can
be used to trace the statistical properties of workloads in the edge, and the cloud can use policies
to aggregate predictions and make actions to fit the workload requirements. For model stor-
age, different candidates were considered as distributed file-systems and object storage plat-
forms. Firstly, we use Hadoop HDFS for distributed data with replication [3, 4] and GekkoFS
for distributed in-memory volatile data [5] were considered. Such systems are a baseline option
without the optimizations required for the current case. Therefore, our preferences are object
storage systems, like GEDS [6], providing a distributed storage system with replication and
resilience, developed by the IBM partners of CLOUDSKIN.

• Provisioning Execution: This functionality involves the execution of prediction and recom-
mendation, and provisioning algorithms with the retrieved data and learned models(i.e., model
serving and model inference). Current serving technologies involve Tensorflow serving, Torch
serve, Seldon etc., or custom containerized inference engines that fit different libraries such as
PyTorch, TensorFlow, ScikitLearn, etc. These model inference applications are containerized
thus can be deployed in different platforms, such as Kubernetes, K3S etc.

3.2 Learning Plane as Data Connectors

The design of the Learning Plane (LP) principal component involves LP agents responsible for pro-
viding predictions and recommendations post-modelling. These agents function as data connectors,
equipped with an API that details their configuration, inputs, and outputs.

The cycle of the Learning Plane Data Connector starts at the submission of an application to be
placed in a certain environment (e.g. Kubernetes cluster, managed by an orchestrator). An instance of
the connector (the LP agent) is configured, indicating where to run, which application or applications
to follow, which sources of telemetry are available, which API should it use to communicate decisions
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Figure 1: Initial schema of the data connector for the Learning Plane

and actions to the orchestrator or scheduler, and which models should it use (or train). Then, as
an active agent, the connector triggers continuously after a configured time, to retrieve data from
the telemetry, generate a forecasting or recommendation, and communicate it to the orchestrator or
scheduler.

The data connector architecture defines the following elements:

1. A configuration, indicating how the instance of the data connector will be run and against
which applications. This configuration will indicate which models or algorithms are retrieved
for modelling and prediction (this can be either for training, updating, forecasting and recom-
mendation), and which are the hyper-parameters for such models. Also, it will indicate the
IDs for the applications to be monitored and made decisions of, in order to produce models
and recommendations for them. And finally, the configuration will indicate the data connec-
tor instance which are the sources of data to be ingested by the modelling (in the current use
cases, the telemetry from the system collector or databases, from a given API REST), also the
connection-points where to send produced decisions and forecasting (that is the orchestrator or
scheduler API triggering changes on the system).

2. An input entry-point, defined by an active data reader receiving the data to be ingested by the
model. When the data connector is instantiated, as an agent accompanying the applications
and environment to be managed, it will collect data from the telemetry sources continuously,
towards performing continuous analytics, in this case the predictions and recommendations,
or the training and updating.

3. An output out-point, defined by an active data producer, generating the forecastings or rec-
ommendations, accordingly to a decided format, to be sent through the REST APIs of the or-
chestrators or actuators, to perform the recommended actions over the workloads (given the
current use cases).

As additional elements to the data connector, there is the model storage to be shared or accessible
across LP instanced agents. A data connector prepared to create a model or update a model needs
access to the shared storage for retrieving and preserving models, in a collection of available models
for specific applications. The current work in progress defines three courses of action:

• Research on workload characterization towards modelling. As indicated in next Section 4.1.1
and 4.1.2, current works are focusing on the discrimination and characterization of workloads,
based on their telemetry indicating resource requirements. Through such discrimination, us-
ing unsupervised learning techniques to dynamically admit new applications without an strict
supervision of system operators, we can classify incoming applications by behavior (resources
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consumption along execution), and select the appropriate model for forecasting their consump-
tion and make decisions over them. The model selection can correspond to a user-indicated
configuration, allow the Learning Plane agent to observe the initial behavior of the application
and then decide which model to use, or a mix of both options letting the user to select a kind
of model and allow the LP to refine the selection among similar models (e.g., models based on
the same algorithm but with different parameters, or trained on different data).

• Policies for placement making. Also, indicated on Section 4.1.1, current works are focusing on
the policies and service-level agreements for use cases, to be adjusted and matched for recom-
mendation on provisioning. This involved models that, once applications have been classified,
can produce a recommendation among available options, to be submitted towards the orches-
trators and schedulers.

• Proof-of-Concept for the Data Connector. The implementation of a prototype for the Learning
Plane data connector is being tested on the Kubernetes + NearbyONE environments, and cur-
rent works are focusing on defining the APIs for data connector, telemetry mechanisms and
orchestrators to communicate. The prototype of the learning plane is detailed 3.3, and in De-
liverable 2.3 Section 4.1.1, the usage of it in a usecase is described in Deliverable 2.3 Section
5.1.

3.3 Learning Plane Prototype

The implementation architecture of the data-connector is shown in Figure 2. The data-connector
acts as an LP agent in charge of providing QoS predictions of the applications and generating appli-
cation placement recommendations for the orchestrator. The implementation of the agent is based
on Scanflow-k8s [7][8], where it provides different deployments of model predictions(including in-
ference pipeline), tracker of metadata/parameters and model registry, and an agent framework for
autonomic management which the engineer only needs to provide custom sensors/actuator based
on each scenario. Specific components are described below:

Figure 2: Implementation architecture of the data connector for the Learning Plane

• Inference pipeline: The data-connector has the inference pipeline to predict the QoS of a given
application on all machines. This pipeline can connect with different models/parameters saved
in scanflow. A scanflow pipeline specification is shown :� �

1 #predictor
2 executor1 = client.ScanflowExecutor(name=’download-model’,
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3 mainfile=’download.py’,
4 parameters={’app_name’: app_name,
5 ’team_name’: team_name,
6 ’model_name’: ’lstm’,
7 ’model_version’: 1})
8

9 executor2 = client.ScanflowExecutor(name=’preprocessing-batch’,
10 mainfile=’main.py’,
11 parameters={’name’: ’preprocessing’})
12

13 executor3 = client.ScanflowExecutor(name=’predictor-batch’,
14 mainfile=’main.py’,
15 parameters={’name’: ’preditor’})
16

17 executor4 = client.ScanflowExecutor(name=’postprocessing-batch’,
18 mainfile=’upload.py’,
19 parameters={’name’: ’postprocessing’})
20

21 dependency1 = client.ScanflowDependency(dependee=’download-model’,
22 depender=’preprocessing-batch’)
23 dependency2 = client.ScanflowDependency(dependee=’preprocessing-batch’,
24 depender=’predictor-batch’)
25 dependency3 = client.ScanflowDependency(dependee=’predictor-batch’,
26 depender=’postprocessing-batch’)
27

28 ##workflow1 batch-inference-graph
29 workflow1 = client.ScanflowWorkflow(name=’batch-inference-graph’,
30 nodes=[executor1, executor2, executor3, executor4],
31 edges=[dependency1, dependency2, dependency3],
32 type = "batch",
33 cron = "*/5␣*␣*␣*␣*",
34 output_dir = "/workflow")� �

Listing 1: QoS prediction workflow

To deploy this workflow,� �
1 deployerClient = ScanflowDeployerClient(user_type="local",
2 deployer="argo",
3 k8s_config_file="/home/rocky/.kube/config")
4 await deployerClient.run_app(app=build_app)� �

Listing 2: QoS prediction workflow deployment

• Recommender: The data-connector has a recommender, where the recommender senses the
results of the predictions and triggers the orchestrator. For instance, in Mobility usecase, the
sensor gets the application QoS predictions, a policy is enabled to choose the machine id with
max_qos, the actuator triggers at this time k8s to patch the placement of the application de-
ployment. The custom function of the sensor and the actuator of the agent is listed below:� �

1 #example 1: watch app QoS predictions
2 @sensor(nodes=["predictor"])
3 async def watch_qos(runs: List[mlflow.entities.Run], args, kwargs):
4 max_qos = 0
5 if runs:
6 max_qos = runs[0].data.metrics[’max_qos’]
7 max_qos_index = runs[0].data.params[’max_qos_index’]
8 if qos_constraints(max_qos):
9 await call_migrate_app(max_qos_index, "scanflow-cloudedge-dataengineer", "nginx-deployment")

10 else:
11 logging.info("all␣machine␣can␣not␣achive␣qos␣sla,␣no␣actions")
12 else:
13 logging.info("no␣data␣in␣last␣check")
14 return max_qos� �

Listing 3: Custom sensor to get maximum app QoS predictions� �
1 async def call_migrate_app(max_qos_index, namespace, deployment_name):
2 nodeName_list=[’cloudskin-k8s-control-plane-0.novalocal’,
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3 ’cloudskin-k8s-worker-1.novalocal’,
4 ’cloudskin-k8s-worker-0.novalocal’,
5 ’cloudskin-k8s-edge-worker-2.novalocal’,
6 ’cloudskin-k8s-edge-worker-1.novalocal’,
7 ’cloudskin-k8s-edge-worker-0.novalocal’]
8 # Prepare the patch
9 patch_body = {

10 "spec": {
11 "template": {
12 "spec": {
13 "nodeSelector": {"kubernetes.io/hostname":nodeName_list[int(max_qos_index)]}
14 }
15 }
16 }
17 }
18 logging.info(f"agent␣is␣patch␣deployment␣to␣node␣-␣{patch_body}")
19 #connect k8s
20 config.load_incluster_config()
21 api_instance = client.AppsV1Api()
22 try:
23 api_instance.patch_namespaced_deployment(
24 name=deployment_name,
25 namespace=namespace,
26 body=patch_body
27 )
28 logging.info("update_deployment_with_patch␣succeeded")
29 return True
30 except client.api_client.rest.ApiException as e:
31 logging.error(f"update_deployment_with_patch␣failed:␣{e}")
32 return False� �

Listing 4: Custom actuator to connect k8s platform

• Timer: The data-connector has a timer to trigger actions. Data-connector agent has different
types of built-in triggers, namely interval triggers, date triggers, and cron triggers (see Table
2). Also, the basic triggers can be combined together using ‘and’ or ’or’ logic to produce more
complex hybrid triggers. These triggers can be scheduled at a specific time or time intervals
to execute tasks so that agents could get required observations to evaluate the changes of the
environment.

Table 2: Types of agent triggers.

Types Definition
Scheduled Interval Trigger at the specified frequency.
Triggers Date Trigger once on the given date and time.

Cron Trigger when current time matches all specified
time constraints (similarly to UNIX cron).

The timer should set a specific trigger and bind to a sensor, the below list shows a definition of
the timer binding to a ’watch_qos’ sensor of planner agent.� �

1 trigger = client.ScanflowAgentSensor_IntervalTrigger(minutes=5)
2 sensor = client.ScanflowAgentSensor(name=’watch_qos’,
3 isCustom=True,
4 func_name=’watch_qos’,
5 trigger=trigger,
6 kwargs={’frequency’:300})� �

Listing 5: Set trigger to watch_qos sensor

After implementing the custom sensor and actuator, the agent can be deployed in the platform to
proactively make decisions.

Page 8 of 40



HORIZON - 101092646 CloudSkin
30/06/2024 RIA

� �
1 #planner
2 planner = client.ScanflowAgent(name=’planner’,
3 template=’planner’,
4 sensors=[sensor])� �

Listing 6: Agent deployment

The full example and tutorial is located in a Github repository: Data-connector https://github.
com/bsc-scanflow/data-connector
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4 ML-based methods for environment modelling

Section 4.1, 4.2, 4.3 and 4.4 introduce the machine learning models to be leveraged for efficient re-
source provisioning and data and workloads allocation for each use case T5.4, T5.5, T5.6, T5.7, re-
spectively.

4.1 Workload scaling and resource allocation

Here we present the methods for scheduling and scaling applications upon resources, and towards
modelling and characterising workloads. Section 4.1.1 introduced model training for cloud-edge ap-
plication QoS predictions for mobility use case. Section 4.1.2 and section 4.1.3 described the progress
of the tasks described in Deliverable 5.1, in specific, new ML methods(i.e., transformer) for workload
pattern characterization predictions and the smart policy of scheduling HPDA. The later work has
been submitted to MIDDLEWARE 2024 and is currently under review.

4.1.1 Cloud-Edge Heterogeneous Modelling

As previously indicated, the connector designed for the learning plane can be considered in this use
case as an agent (or set of agents) with a configuration, indicating the kind of metrics to learn and
predict, and the models to use with their specific predictions and recommendations. Such recom-
mendations are passed to the scheduler through a specific API (from the scheduler or orchestrator).
Given the current scenario and design, completing a first prototype requires: the generation of data
to train and test the models, a collection of technologies to implement the telemetry continuous col-
lection, and technologies for acting as back-end for the machine learning methods and processes.
For the completion of this prototype, we have developed a methodology depicted in Figure 3. This
methodology focuses on the steps needed for the design of the first prototype, but also highlights
in blue the steps that will be integrated within the Learning Plane for continuous development and
continuous integration of models after the development of the first prototype.

Figure 3: Methodology for the creation of a prototype. First two grey steps are needed for the envi-
ronment preparation. Blue steps with the last four steps will generate a model for Learning Plane.

Definition of prototype: The initial prototype should integrate predictive placement of the video-
analytics application to enhance it’s QoS in an environment where other applications are also con-
suming resources. Such prediction requires modelling of the application and environment, for which
data will need to be collected and most importantly, the emulation of a realistic environment is
needed.

Emulation of environment: We developed Stress-Profiler, a custom-made Python library, emu-
lating an environment with multiple applications running, stressing CPU nodes and memory using
behaviors and patterns from real Cloud systems, where a generic but statistically solid resource usage
can be modelled and replicated, putting our target applications in scenarios of resource competition.
Stress-Profiler is divided into multiple parts:

• Data collection: using data from real Cloud systems such as Alibaba [9], we feed and prepro-
cess data from multiple sources ensuring multiple generic and real resource behavior telemetry.
Apart from the resource telemetry, we also keep statistics such as the distribution of the dura-
tion of the jobs, and the distribution of the generation of jobs to emulate a realistic environment
where multiple applications are running.

• Profiling: applying AI4DL [2] to the preprocessed data, we focus on discovering behaviors
and phases, using this deep learning clustering technique, we are able to translate the time
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series telemetry data into time series phases data, which can easily be profiled, allowing us to
effectively compare a massive amount of data.

• Pattern compressing: using as input the results from AI4DL [2], we compress the phases se-
quences in order to detect repeated patterns between applications, this is key as it ensures we
will emulate a balanced environment, where all profiles of applications are represented, adding
resilience to our future trained models.

• Stress generation: we generate stress based on randomly selecting profiles of applications
found when compressing the patterns. We use statistics from real Cloud systems such as the
job generation distribution and the job duration distribution to mimic a realistic environment.
With this randomized, yet realistic design, we allow for continuous creation of different bal-
anced environments, ensuring that the environment we generate is different yet realistic every
single time, which will be key when training models to avoid over-fitting with repeated data.

Collection of metrics: This step focuses on the data retrieval methods for modelling and predic-
tion for the creation of the prototype. Find details of the developed solution in Section 5.1. From
this step on, the methodology designed will be integrated within the Learning Plane, as we aim for
designing a prototype that can recurrently collect real-time data, preprocess it, retrain and update the
developed models.

Preprocessing of metrics: This step focuses on the development of the preprocessing pipeline to
be used with the metrics collected. The preprocessing tackles cleaning nulls, duplicates, rearranging
the data and normalizing values for training purposes. It also ensures structure consistency keeping
data-types and metrics consistent across time, allowing us to store preprocessed data persistently
and then use it for training models. Further use of DL tools such as AI4DL [2] is being considered
for preprocessing the data, as it allows us to efficiently encode the timeseries data into phases, thus
performing feature engineering with our telemetry variables.

Training of models: This step focuses on training Machine Learning and Deep Learning mod-
els, with the objective to infer QoS predictions from real-time data in order to maximize the QoS at
the placement of the application. Currently, we conducted benchmark in the Cloudskin testbed of
the mobility usecase, collected traces and trained an LSTM model for workload QoS predictions as
shown in Fig 4.

Figure 4: LSTM model for workload QoS predictions.

Uploading models: This step will save models in a model repository for data connector to use in
model inference, allowing the data connector to keep a library of multiple trained and updated ML
and DL models. This serves as the first step to allow the Learning Plane to smartly choose the best
model for every given scenario, keeping a library of models with different inference purposes and
capabilities.

In this deliverable, we introduced a pipeline to train a ML baseline model for QoS prediction
in a Cloud-Edge environment. The next setup of this work is to add the model to the repository
and serve the model by using the Learning Plane, allowing real time inference on the expected QoS
and using the knowledge of predictions to generate recommendations and trigger orchestrators(i.e.,
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Kubernetes, NearbyOne Orchestrator).

4.1.2 Workload Pattern Characterization through Transformers

In the last report, we indicate that the resource consumption of a workload is not constant, neither
stable. Resource usages can have steadiness, variability and abrupt behaviours. In some occasions,
the change between different behaviours is abrupt forming what are commonly named spikes, or
“burstiness” behaviour. Such varied consumption leads Cloud resource users to demand an alloca-
tion of resources far over the average usage. This is an easy but inefficient solution for preventing
the highest spike of resource consumption to be underneath the requested limit. Otherwise, the con-
tainer or virtual machine may be evicted before completing the execution. For this reason, the vast
majority of resources in common Cloud infrastructures are on-line but underused, wasting energy
while costing users and providers their (idle) running costs.

Research in Cloud computing has been working for years to avoid the waste of computing re-
sources, through co-location and consolidation of applications, dealing with the added risks of over-
whelming resources and producing a degradation of the provided Quality of Service. Current ap-
proaches focus on co-locating applications with different resource needs in the same computing
nodes, avoiding resource competition, or co-locating applications with different demand or toler-
ance towards lack of resources, allowing low tolerance applications to lend resources to high toler-
ance ones when required. Such processes are transparent to the user, who only observes the progress
of their tasks. However, this approach endures big problems when heavy spikes occur in bursty
workloads, as such demand cannot be satisfied when another co-located application is also having
a burst or a period of high demand. This impacts the workloads available resources, severely de-
grading their QoS. For that reason, we are focusing on methods that are able to predict the future
consumption of workloads, allowing Cloud providers to anticipate sudden increases of demand and
to have an overall good resource management in their computing clusters.

There are plenty of works in the literature dealing with resource usage forecasting, attempting
to predict with high accuracy time series on CPU and memory demand, but the vast majority of
proposed models are old methods falling back into regression algorithms or variants like Random
Forests or Support Vector Machines. Such methods do not incorporate the last advances in time se-
ries forecasting, not even multi-variate series, even less the latest advances in deep learning towards
time series. One of such advances are the so-called Transformers, proposed by Google in 2017 [10].
Transformers have revolutionized the state-of-the-art of natural language processing, moving from
recurrent neural networks to convolutional blocks with full-attention layers. Inputs are processed
all at the same time, by different parts of the model, receiving between its multiple layers, all the
outputs from their counterparts. These methods have been researched for the past years, showing
their advantage over their predecessor models. The current state-of-the-art on Transformers include
the Informer [11] and YFormer [12] models, both simplifications of the original architecture with a
few extra features for time-series. While the Informer model uses sparse convolutional layers to im-
plement the attention mechanism to reduce drastically the neural network size, the YFormer model
merges the Transformer architecture with the well-known U-Net neural network architecture, also al-
lowing it to be used in application domains such as computer vision aside of the already mentioned
natural language processing.

The principal target for using Transformers is NOT to forecast a time-series Tn+1 . . . Tn+w from
Tn−w . . . Tn, but to forecast specific behaviours (i.e. spikes and sudden changes on the demand), as
we are not interested on knowing the exact consumption but on the changes on its ceiling towards the
next provisioning window. Current methods of evaluation, and hence for training and fitting models,
are totally oriented to the default forecast matching (find Tn+1 . . . Tn+w with high accuracy), like MSE
and MAPE, therefore not really useful for Cloud provisioning. Models trained with such metrics put
all focus on matching time series more than our real target, not evaluating abrupt spikes on resource
demand correctly, nor conforming a proper analysis of the generated model performance towards
our main interests. As an example, Figure 5 shows a resource usage trace alongside a prediction
from the default forecasting matching and, in contrast, what would be the desired prediction in a
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Cloud provisioning scenario.

Figure 5: Example that depicts the resource usage of a workload alongside a prediction from the
default forecast matching (left) and what would be the desired prediction in a cloud environment
(right). Contrary to the left prediction, the example from the right is able to reduce possible cases of
resource starvation and to foresee future increases with anticipation.

As stated in the last deliverable, the current works do not focus on specific behaviours and evalu-
ation functions tailored for such, and we were focusing our research on resource prediction towards
a new set of functions that allowed attention neural network such as Transformers to learn specific
patterns to be discovered or forecasted, specifically:

• The study and research of novel modeling methods based on Transformers for proper pre-
diction and anticipation of sudden behaviours towards resource allocation, putting specific
emphasis in the correct prediction of patterns like spikes. The objective is to learn and recog-
nize common patterns that can precede a spike in the resource consumption, while keeping the
model agnostic about a specific workload and its dependencies, only obtaining the required
information from past values.

• The adaptation of the current evaluation strategies to the Cloud provisioning field, assessing a
proper allocation of resources during the execution of a workload, and the correct prediction in
time and amplitude of resource consumption spikes.

Since the last deliverable, we did obtain prominent results in both research lines, and we are now
preparing a publication with them. Nevertheless, we are still undergoing some experimentation to
better support the desired contributions. Specifically, we are working on incorporating the following
improvements:

• The employment of state-of-the-art methodologies to explain the reasons behind the predic-
tions of the models. Analysing what important features are detected in the original data to
predict future spikes. This will validate the learning of the models, and also will open the room
for possible improvements in the efficiency of these models. Once we know which informa-
tion is decisive for the final predictions, we could reduce the problem to just searching these
patterns instead of making use of a full deep learning network.

• The analysis of the adapted evaluation strategies. Checking their relation with standard evalu-
ation methodologies. Understanding in which cases they work better and in which cases they
end being not beneficial.

4.1.3 Scalable Scheduling for HPC/HPDA

Leveraging serverless platforms for the efficient execution of large-scale data analytics frameworks,
such as Apache Spark, has gained substantial interest since early 2022. The flexibility, elasticity,
free-of-management, and on demand scalability offered by serverless have motivated the effort in
deploying large-scale data analytics applications to serverless platforms. However, figuring out how
to autoscale resources for such complex workloads so that we can fully benefit from the flexibility and
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elasticity of serverless is a non-trivial challenge. Mis-configuration can result in severe performance
and cost issues arising from resource under- and overprovisioning.

Current systems allocate resources at the per-application level, using general heuristics like fair
scheduling, shortest-job-first, and simple packing strategies, ignoring completely application char-
acteristics. For instance, by default, the scheduler of Spark [13] allocates the resources in a FIFO
manner: the first stage gets priority on all available resources, then the second stage gets priority,
etc. Figure 6 shows an example of a computation over 10 executors when relying on Spark’s de-
fault FIFO policy. As can be noticed, this leads to a high inefficiency: looking to a given stage as
a black-box, all resources are allocated even if a given stage does not need all of them. Consider-
ing application-specific characteristics, e.g., stage parallelism levels, systems can efficiently allocate
shares of resources to application stages to achieve similar or higher overall performance. Setting the
scale-out level at lower granularity, i.e., per-job or per-stage, avoids wasting resources on jobs/stages
with little inherent parallelism or running on small input data, leaving more free resources to job-
s/stages with large input which can harness additional parallelism. Efficient utilization of resources
matters for both the service provider and the user: the provider can save millions of dollars at scale,
and the user can benefit from higher performance at the same or even lower cost.
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Figure 6: TPD-DS q72 execution on 10 executors (2 cores each) with Spark’s default FIFO policy.
Stages are identified with different colors, tasks are delimited by vertical bars inside each stage, and
white spaces identify time-windows in which executors are free.

Among others, works like [14] tackles this problem at per job-level by presenting Decima, a sys-
tem using Reinforcement Learning (RL) and neural networks to learn workload-specific scheduling
algorithms without any human instruction beyond the high-level objective of minimizing average
job completion time. In particular, it uses existing monitoring information and past workload logs
to learn sophisticated scheduling policies automatically. Even though Decima outperforms existing
heuristics, reducing the average job completion time of TPC-H [15] query mixes by at least 21%, it
does not represent a solution for production environments. More precisely, Decima requires a large
number of offline simulated experiments to train its RL algorithms. Recent work applies advanced
machine learning to schedule workflow tasks but does not fully leverage the resource elasticity in
serverless, and the lengthy training time for these approaches limits their practicality in real-world
cloud settings.

Since the last deliverable, we have made progress and have presented Dexter, a resource alloca-
tion manager, leveraging serverless computing elasticity that continuously monitors the execution
of applications, dynamically allocating resources at a fine-grained level to guarantee performance-
cost efficiency (optimizing total runtime cost). Dexter is novel in combining predictive and reactive
strategies that fully exploit the elasticity of serverless computing to enhance the performance-cost ef-
ficiency for workflow executions. Unlike black-box ML models, Dexter quickly reaches a sufficiently
good solution, prioritizing simplicity, generality, and ease of understanding. Our experimental eval-
uation shows that Dexter achieves benefits in terms of both cost, performance-cost efficiency, while
saving a significant amount of resources. Furthermore, Dexter represent a robust solution since it
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is capable to react to new unseen workloads. Dexter details are under paper review and will be
presented in the next deliverable.

4.2 Real-Time Data-Streams Smart Management

We have built a Proof of Concept (PoC) that enables NCT to ingest reliably video streams and perform
real-time AI video inference for computed-assisted surgery workloads (see deliverable D2.3). Given
that, in this section we focus on a specific problem related to adapting the streaming infrastructure
to workload fluctuations that are present in the NCT surgery room utilization traces. In particular,
the main problem we address is how to make a Pravega [16] cluster auto-scalable, while minimizing
the number of instance auto-scaling events, as they may induce high tail latency that greatly impacts
video analytics users.

4.2.1 Problem Statement: The Hidden Latency Cost of Streaming Auto-scaling

In the context of distributed systems, auto-scaling or elasticity is the property that allows a system to
adapt to fluctuating workloads. In many scenarios, including the Cloud and the Edge, elasticity is a
vital property required in systems and services. For instance, a Cloud service may grow in popularity
quite rapidly, thus requiring the underlying system to increase the number of instances supporting
the service to cope with the incoming workload burst. As another example, services at the Edge may
need to auto-scale to adapt their capacity for the peak hours of utilization and downscale rapidly
to free up resources, as the Edge is typically resource limited. These examples give a sense of why
auto-scaling is important in distributed systems across the Cloud-Edge Continuum.

A common approach to system auto-scaling is the reactive one [17]. This approach to auto-scaling
is based on building a control loop that captures performance metrics across the system (i.e., latency,
throughput) and automatically changes the number of system instances according to some expected
performance thresholds. This approach is relatively simple to implement and to operate, as the ad-
ministrator only needs to define some service level objectives (SLO) to be respected so the system
can auto-scale accordingly. Still, a problem of using this approach is that the performance thresholds
are not enforced immediately, but in some cases the system may wait for some time to verify that
the SLO violation is persistent before taking the auto-scaling decision. The shorter the time is before
taking an auto-scaling decision (i.e., more reactive), the fewer SLO violations the user may experience.

However, in some cases, there may be a penalty in changing the number of instances running
a service on the fly. Naturally, the type of penalty may differ depending on the system at hand.
Systems like object stores may require rebalancing objects across storage nodes when increasing or
decreasing the number of instances. This rebalancing activity may have associated background traffic
for moving or replicating data objects, which could impact the performance of ongoing IO. In this
study, we focus on the impact of auto-scaling in streaming systems, which are generally latency
sensitive [18, 19, 20, 21, 22]. This is key to satisfy the latency requirements for running Edge analytics
workloads (e.g., AI video inference).

In the context of streaming systems, a too reactive algorithm may also represent a performance
problem to the system, especially when it comes to tail latency. To wit, it is not uncommon that there
is a transient performance cost related to auto-scaling the number of system instances. For example,
in Figure 7 we present a real experiment on AWS of the impact of auto-scaling on the IO latency of
a Pravega streaming storage system. In this experiment, we started a benchmark tool writing and
reading events from Pravega at a rate of 200 events/second. As visible, every time we changed the
number of instances, we observed much higher latency values (> 100x). This is because the Pravega
client may need to reconnect to the new service instances, and such re-connection process induces a
latency much higher than normal. Therefore, a too reactive auto-scaling approach may induce many
of such high-latency events under a fluctuating workload, which may greatly impact the service for
latency-sensitive applications.
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Figure 7: Latency impact of Pravega changing the number of Segment Stores in Pravega during an
IO streaming workload.

4.2.2 Analysis of NCT Edge Video Analytics Workload Traces

The need for auto-scaling is evident in the use-case we target in this study: the National Center for
Tumor Disease (NCT, Germany). This institution mixes data scientists and surgeons to apply data
analytics techniques on surgery-related multimedia. In a nutshell, the use cases of NCT requires
video data from surgery cameras to be durably ingested and processed in real time via specialized
AI inference models to help surgeons during the procedure. Moreover, video data should be durably
stored in long-term storage, so it can be accessed in batch analytics jobs (e.g., AI model training). We
addressed this use case by setting up a PoC using Pravega and GStreamer to manage video data for
NCT AI jobs (see deliverable D2.3).

However, the utilization patterns of surgery rooms may influence the workload to be handled
by Pravega and the resource requirements for AI inference jobs. To this end, we have worked with
NCT to get a trace that describes the utilization of surgery rooms that may potentially require video
analytics services during surgeries. As a result, Figure 8 shows the complete 2-month trace that NCT
collected and anonymized for us. By a simple inspection of the trace, we can observe strong daily
patterns in the utilization of the available surgery rooms (10). Even more, weekends tend to exhibit
lower utilization compared to weekdays. These kinds of patterns are inherent to human activity and
have been observed in many other scenarios [23].

Figure 8: Surgery room occupancy at NCT (complete traces).

To investigate the NCT trace with more detail, Figure 9 shows a one-week period of it. As ex-
pected, the trace shows that the utilization of the surgery rooms occurs during the central hours of the
day (e.g., 7 : 00 to 18 : 00), which aligns with the normal working schedule of non-emergency surg-
eries. Moreover, the peak utilization of surgery rooms during weekends is 20%-25% of a weekday’s
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utilization.

Figure 9: Surgery room occupancy at NCT (1 week).

Given the characteristics of NCT’s surgery room occupancy traces, an Edge/Cloud infrastruc-
ture running a streaming workload following such patterns may benefit from auto-scaling, either in
terms of resource savings or performance improvements. However, as mentioned in the problem
statement, using a pure reactive auto-scaling approach for the streaming infrastructure may lead to
additional latency spikes due to frequent instance scaling events derived from the observed strong
workload patterns at NCT. For this reason, we would like to explore a “predictive” approach to auto-
scaling the streaming infrastructure, so we can adapt the streaming infrastructure in advance while
minimizing the scaling events. This would reduce high tail latency, which is critical in a computer-
assisted surgery use case.

4.2.3 Predicting workload patterns in NCT

In this section, we analyze the NCT trace and explore AI/ML techniques to forecast workload in
the near future. We are interested in this avenue of research given the visible workload correlations
present in the NCT trace. Effectively exploiting workload prediction may not only be beneficial
for predictively auto-scaling streaming services, but other types of infrastructure in the Cloud Edge
continuum.

In this sense, to be able to predictively auto-scaling streaming service instances we need to resort
to prediction models that can capture seasonality in a time series [24]. One of these models we are
interested in is the Long-Short Term Memory (LSTM) model. LSTM is a type of artificial recurrent
neural network (RNN) architecture used in the field of deep learning [25]. Unlike standard feed-
forward neural networks, LSTM has feedback connections, making it a "recurrent" network. It is
well-suited for tasks that require the network to learn from data that spans over long sequences
and where maintaining context over time is crucial. LSTMs are specifically designed to overcome
the limitations of traditional RNNs, particularly the problem of "vanishing gradients", which makes
it difficult for RNNs to learn long-range dependencies in sequential data. LSTMs can maintain and
learn from data over long periods, making them ideal for tasks such as time series forecasting, natural
language processing (NLP), speech recognition, and more.

We proceeded by using the NCT trace as the input for an LSTM model. To this end, we have
trained the LSTM model with 1-week worth of data and evaluated its effectiveness on the remaining 7
weeks of trace. The procedure to do so involves the normalization of the values and the configuration
of the LSTM neural network (i.e., 2 hidden layers, 2 feed forward layers, 10-15 neurons per layer). It
is worth noting that for this piece of work, we have not spent a huge amount of effort in evaluating
the accuracy of the LSTM model based on different parameters for the NCT trace, as that exercise
alone would be worth a dedicated study. Still, even with some basic configuration, Figure 10 shows
that the forecast of LSTM is quite close with the actual trace, even with a 1-week training period.

To inspect the actual accuracy of the LSTM prediction, Figure 11 shows the absolute errors of the
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Figure 10: Evaluation of the LSTM model on the NCT trace.

LSTM forecast compared to the actual traces. We observe a significant difference in accuracy when
using a closed and open loop version of LSTM. In an open loop, also known as “teacher forcing”,
during training, the model is provided with the true previous output (from the training data) as input
for the next time step, rather than using its own previous predictions. In a closed loop, also known
as “free running” mode, during both training and inference, the model uses its own predictions as
inputs for the next time step.

As can be observed, the errors in the closed loop version of LSTM are significantly larger com-
pared to the open loop version, especially regarding extreme error values. This is not surprising, as
the closed loop model does not fix predictions based on actual real measurements, yielding a poten-
tial accumulation of errors. Conversely, most of the errors for the open loop version of the LSTM
model range within 1-2 units. This implies that, when the model misses, it forecasts 1 to 2 surgery
rooms more to be occupied/free compared to the actual trace.

Figure 11: Errors from the LSTM forecast compared to the actual NCT trace.

Overall, the observed range of errors seems tolerable for being exploited in a predictive auto-
scaling solution for streaming analytics [26, 27]. Therefore, we could exploit this model for auto-
scaling the streaming infrastructure predictively, so we minimize both periods of time suffering from
under-provisioning number of auto-scaling events. In principle, this should reduce tail latency in
streaming video analytics.

4.2.4 Predictive auto-scaling of streaming service instance for video analytics

Next, we explore the application of the LSTM model in the auto-scaling of the streaming infrastruc-
ture (i.e., Pravega). To this end, we design a simple algorithm that relies on the LSTM predictions
and abides by the following two observations:

• Prioritize latency over resource usage: We are targeting latency-sensitive sensitive streaming ap-
plications, like video analytics. For this reason, we prioritize in our algorithm to meet latency
requirements over minimizing resource usage (e.g., amount of instance execution time). Re-
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call that, in terms of latency, we pursue minimizing tail latency events related to auto-scaling,
which could be quite disruptive when running video analytics applications.

• Coarse grained prediction windows: In the previous section, we have observed that LSTM may
have some degree of inaccuracy comparing prediction to the original trace. But, at the same
time, we also noticed that workload patters are structurally quite consistent. This leads us to
exploit coarse grained prediction time windows of the near future to make auto-scaling deci-
sions. Moreover, we also realize that the wider the time window for predictions we use, the
fewer auto-scaling events we may induce.

Figure 12: Predictive auto-scaling algorithm based on LSTM forecasts.

With these observations in mind, we use a predictive auto-scaling algorithm as shown in Figure
12. Our predictive algorithm is based on LSTM forecast traces about the near-term workload. The
algorithm works as follows. First, the algorithm is expected to satisfy a latency SLO goal (e.g., la-
tency at p95 under 20ms). This goal is expected to be always satisfied, irrespective of the auto-scaling
events. Second, it also establishes a time window w. The size of the time window refers to the period
of time in the near future that the algorithm will consider from the LSTM prediction. Based on that,
the algorithm will pick the maximum expected workload within w. In the NCT trace, the workload
may be described as number of ongoing surgeries using video stream analytics. The algorithm also
assumes some modeling or performance-related information about the latency of a system instance
under parallel streams. Based on such performance information, the algorithm looks for the number
of streaming system instances that satisfy the required latency SLO assuming the maximum pre-
dicted workload within w. Once the system gets to the next time window, the algorithm runs again.
As can be noticed, the algorithm gives priority to meeting latency requirements to minimizing re-
source usage. Moreover, with a sufficiently large prediction time window, the algorithm is expected
to greatly reduce the number of auto-scaling events inducing high tail latency.

4.2.5 Simulation-based analysis of streaming infrastructure auto-scaling

Next, we validate the exploitation of a predictive approach for auto-scaling stream analytics via sim-
ulation. To this end, we have developed a trace-based simulator based on real performance mea-
surement data. First, we characterized the end-to-end latency of a Pravega Segment Store instance
handling video streams. This characterization has been done by deploying a Pravega cluster on
AWS EKS (4 i3.2xlarge nodes with local NVMe drives). The Pravega cluster consisted of 1 Con-
troller instance, 1 Segment Store, and 1 Bookkeeper instance (using a dedicated NVMe for the ledger
and journal volumes). The main Pravega instances were running in 2 Kubernetes nodes, and we
prevented Kubernetes from scheduling any further pods in these nodes to avoid performance inter-
ferences. Given that, we deployed pairs of benchmark pods writing and reading video streams in

Page 19 of 40



HORIZON - 101092646 CloudSkin
30/06/2024 RIA

the two remaining Kubernetes nodes (1240x780, 30 FPS per video stream). The performance metric
we are interested in is the “end-to-end latency”. To measure this metric, we modified the GStreamer
Pravega connector to attach the current timestamp as metadata when writing every video frame.
Then, the video reader obtains the “write time” of each frame and calculates the delta with its local
time when reading a video frame. This measurement is accurate given that the Kubernetes cluster
uses a time synchronization service. As visible in Figure 13, this methodology allows us to have
an accurate measurement of the end-to-end latency for video streams depending on the number of
video writer and reader pairs.

Figure 13: Measured end-to-end latency of GStreamer video frames in Pravega (AWS EKS deploy-
ment with local drives). The cluster was formed by 1 Pravega Segment Store, 1 Pravega Controller,
and 1 Bookkeeper instance. Each video stream is made of 1280x740 frames and 30 FPS.

We use the latency distribution values in Figure 13 to feed our simulator. That is, depending on
the number of video streams we expect on a surgery and the number of ongoing surgeries at any
given time, we could estimate the end-to-end latency of video frames based on the available Pravega
instances. To wit, if in a given moment there are 8 video streams according to the NCT trace and
we have 2 Pravega instances at that time, the IO latency the simulator will report would be based on
extracting values from the empirical distribution of 4 writer/reader pairs in Figure 13. For simplicity,
we assume an even distributions of video streams across instances.

In Figure 7, we showed that auto-scaling Pravega instances may induce latency spikes. To capture
this behavior, our simulator allows us to define a latency penalty for every instance auto-scaling
event (e.g., standard distribution with µ = 100 and σ = 10). The number of high latency frames
impacted will be proportional to the extent of the auto-scaling event. For instance, if there are 2
Pravega instances handling 4 video streams each and the system decides to auto-scale to 4 Pravega
instances, half of the video streams will be potentially reallocated to the new instances and, therefore,
will likely suffer from a latency penalty.

With such simulator functionality in place, we next overview the auto-scaling methods to be eval-
uated. In all cases, the algorithms target to achieve an end-to-end latency SLO (e.g., 20ms at percentile
95). Concretely, to help the algorithms to being less reactive, we provide a latency SLO higher and
lower tolerance bounds, defined as a percentage of the main SLO value (e.g., 10%). Moreover, the
goal of the proposed predictive algorithms is to achieve the same as well as to minimize the number
of instances auto-scaling events that may induce high latency spikes. The algorithms evaluated are:

• Reactive auto-scaling vanilla: This method embodies the most common approach to auto-scale
distributed systems. There is a feedback loop that takes performance metrics as input and
reacts to the ongoing workload by scaling up or down the number of service instances. In our
case, this algorithm takes the last m minutes as the “time window” to compute the end-to-end
latency for all the streams in the system. If the current end-to-end latency of video streams is
over the SLO higher bounds (e.g., 22ms at percentile 95), the algorithm scales up the number of
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Pravega instances. Similarly, the algorithm may scale down the number of Pravega instances if
the current latency is below the lower SLO bound in the last time window.

• Reactive auto-scaling with memory: The most basic version of the reactive algorithm may lead to
situations of instability. That is, it may detect that latency is below the threshold for the current
window period and then decide to downscale the number of Pravega instances. However, it
may be the case that fewer Pravega instances may lead to an end-to-end latency over the higher
latency SLO bound. As the algorithm does not have memory, it may be scaling up and down the
number of instances continuously, which is undesirable. To mitigate this problem, we evaluate
a version of the reactive auto-scaling algorithm with memory. This means that the algorithm
will record the number of writer and reader pairs in the system in the previous scaling event,
which is used to prevent downscaling the system if that would lead to violating the latency
SLO again.

• Predictive Oracle auto-scaling: In this study, we propose to exploit recurrent workload patterns
to minimize the number of auto-scaling events while meeting the expected streaming system
latency. To have a reference for comparison, we use an “oracle”. The oracle will use the pre-
dictive algorithm described in the previous section (see Figure 12) but using as prediction the
actual NCT trace. Therefore, the “oracle” provides us an upper bound of the effectiveness of
the proposed algorithm when using a perfect prediction.

• Predictive LSTM auto-scaling: In this case, the predictive algorithm uses LSTM forecasts based
on a 1-week period of the NCT trace. Note that we execute our experiments starting after the
training period, which should give a sense on the accuracy of the predictions.

Experiment 1: Evaluating the auto-scaling behavior of the proposed algorithms. The goal of this
experiment is to evaluate the number of auto-scaling events that induce high tail latency for the
proposed algorithms. To this end, Figure 14 shows a time-series view of the Pravega instance auto-
scaling events for the proposed algorithms. Visibly, the Reactive “vanilla” auto-scaling shows a sig-
nificant degree of instability. To wit, the algorithm reacts only based on the last window (5 minutes)
of latency observations without considering past auto-scaling events (i.e., memoryless). This leads
the system into situations in which the number of instances goes up and down, given than a certain
number of Pravega instances meet the latency SLO for the workload at hand, but reducing them
makes the system to miss the latency SLO. In this sense, we observe that providing this algorithm
with memory about past auto-scaling events and the latency SLO achieved at that moment greatly
prevents such situations of instability. As visible, the Reactive “memory” algorithm performs much
better than the “vanilla” one by reducing the number of auto-scaling events. On the other hand, the
Predictive approaches (“oracle” and “LSTM”) can perform even better than the reactive ones when
it comes to minimize the number of auto-scaling events.

Figure 14: Time-series view of Pravega instance auto-scaling events for the proposed algorithms.
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To inspect the number of instance auto-scaling events more in detail, we suggest to look at Fig-
ure 15. In Figure 15, we observe that the Reactive “vanilla” auto-scaling method exhibits 1310
auto-scaling events during 1 week of simulation of the NCT trace. By adding memory about past
auto-scaling events (Reactive “memory”), we have been able to reduce this number in almost 30x (44
instance auto-scaling events). Still, we can confirm from this figure that the predictive approaches
can drastically reduce instance auto-scaling compared to reactive ones. For instance, the Predictive
“LSTM” method reduces instance auto-scaling events in 3.6X compared to Reactive “memory” (12 in-
stance auto-scaling events). Interestingly, the Reactive “LSTM” only incurred 2 instance auto-scaling
events more than the Predictive “oracle”, which is the ideal case in which the prediction the same as
the experienced workload.

Figure 15: Number of Pravega instance auto-scaling events depending on the algorithm at hand.

The goal of minimizing the number of instance auto-scaling is to reduce long tail-latency values,
which could impact real-time video analytics applications. This is illustrated in Figure 16. In our
simulations, we induce a high latency event (i.e., standard distribution with µ = 100 and σ = 10)
for all the writers impacted by an instance auto-scaling event. Figure 16 clearly shows these high
latency events as part of the end-to-end latency distribution tail. Visibly, the predictive methods have
a much “smaller” tail, given that the latency percentiles impacted with auto-scaling events are p99.89
and p99.91 for “LSTM” and “oracle”, respectively. Conversely, reactive algorithms are impacted
much more heavily by high-latency auto-scaling events: p87 and p99.56 for Reactive “vanilla” and
Reactive “memory”, respectively.

Figure 16: High tail-latency values related to instance auto-scaling events for the proposed algo-
rithms.

Conclusion: Our predictive auto-scaling algorithm for streaming systems can greatly reduce the
number of instance auto-scaling events, and therefore, reduce tail latency associated to autos-scaling.
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Experiment 2: Analysis of the end-to-end latency SLO enforcement. In this experiment, our goal
is to analyze if the end-to-end latency SLO is enforced by the proposed algorithms. In this sense,
Figure 17 provides a time-series view of the end-to-end latency for 1 week of NCT trace simulation.
Note that all the algorithms have a tolerance threshold (10%) relative to the end-to-end latency SLO
defined (p95 end-to-end latency under 20ms) to make them less sensitive to workload changes. Such
tolerance bounds are depicted as back lines in Figure 17. Visibly, the highest rate of SLO latency
violations is related to Reactive “vanilla” method. There are at least two reasons for this behavior: i)
the sudden changes in workload may induce SLO violation during the observation window (5 min-
utes), and ii) the lack of memory in the algorithm may induce to mistakenly downscaling instances,
which would induce additional misses in the latency SLO. Similarly to the evaluation of the number
of instance auto-scaling events, adding memory to the reactive algorithm can greatly improve its sta-
bility, which translates into meeting SLO more frequently (Reactive “memory”). At first glance, the
Reactive “memory” method seems to achieve the latency SLO in a similar way to the predictive ones.

Figure 17: Time-series representation of the p95 end-to-end latency during 1-week of NCT trace.

To inspect end-to-end SLO violations more in depth, we recommend looking at Figure 18. Visibly,
the Reactive “vanilla” approach is by far the worst performing one, as it violates the (upper bound)
SLO latency in 5.82% of the (1-minute) time slots. On the other hand, we observe that the Reactive
“memory” algorithm achieves a slightly lower (upper bound) SLO violation rate (0.36%) compared
to the Predictive “LSTM” method (0.62%). The main reason for this is that, if the LSTM prediction is
significantly lower compared to the actual workload, the number of provisioned Pravega instances
will not meet the expected latency SLO. This is supported by the fact that the Predictive “oracle”
method achieved a 0% of end-to-end latency violations.

Figure 18: Rate of end-to-end latency SLO violations for the proposed algorithms.

Conclusion: The Predictive “LSTM” method achieves a slightly worse SLO violation rate com-
pared to the Reactive “memory” method, as it may be misled if the prediction underestimates the
ongoing workload. This may be improved by adding some fallback reactive behavior to take over in
the case of a wrong workload prediction.
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Experiment 3: Inspecting differences in resource usage. In this battery of experiments, we aim
at quantifying the time of execution of Pravega instances during auto-scaling workload. Figure 19
illustrates the number of execution time (in minutes) of Pravega instances handling the same 1-week
workload period from the NCT trace under different auto-scaling algorithms. Interesting, the Re-
active “memory” algorithm induces an overall execution time of 2.79% higher than the Predictive
“LSTM” (and 1.79% higher than Predictive “oracle”). This result may be related to some underes-
timation in workload forecasts, which also contributed to increase the number of SLO misses for
Predictive “LSTM”. But, overall, the Reactive approaches do not achieve any significant resource
savings compared to the Predictive approaches.

Figure 19: Execution time of Pravega instances for a 1-week period of the NCT and the proposed
algorithms.

Conclusion: The Reactive approaches tested do not significantly save more instance execution
time compared to Predictive approaches. This supports the usage of Predictive algorithms, given the
reported improvements in tail latency.

Experiment 4: Accuracy and time-granularity in predictive auto-scaling. In this battery of exper-
iments, we analyze the impact of the time window size in the Predictive algorithm. In Figure 20,
we show the number of instance auto-scaling events depending on the prediction window size. As
can be inferred, a larger time window helps to minimize the number of auto-scaling events. This
seems natural, as a larger prediction time window reduces the frequency in which the auto-scaling
algorithm may decide to change the number of instances in the system. Additionally, this makes the
algorithm coarser grained and less sensitive to short-term deviations between the forecast and the
actual workload. In this sense, we observe that a prediction window of 3 hours achieves the same
result as the “oracle” for the NCT trace. This is interesting because a larger prediction window seems
to make the prediction accuracy less critical to obtain good results.

Figure 20: Number of Pravega instance auto-scaling events for different Predictive algorithm time
windows.

As a direct consequence of the number of instance auto-scaling events, Figure 21 shows the tail
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latency for the different prediction windows tested. Visibly, the tail latency related to instance auto-
scaling is very similar for the Predictive “oracle” and Predictive “LSTM” with a prediction window
of 3h. In this sense, we also observe that tail latency may get significantly impacted if we use a shorter
prediction window (e.g., 20 minutes).

Figure 21: High tail-latency values related to instance auto-scaling events for different Predictive
algorithm time windows.

Finally, we are interested in inspecting the number of end-to-end latency violations for the dif-
ferent prediction windows tested. In Figure 22, we also observe that latency SLO is also better
preserved when using a larger prediction window. The reason for that is likely the fact that the algo-
rithm picks the maximum workload for the prediction window and adapts the number of instances
to it. With a larger prediction window, the system is likely to use a number of Pravega instance ca-
pable of handling the workload for the time window, even though if there are variations within the
window itself.

Figure 22: Rate of end-to-end latency SLO violations for different Predictive algorithm time windows.

Conclusion: Larger prediction window (e.g., 3 hours) provides the best results compared to
smaller ones. This is especially true if we focus on improving latency, which is the main goal of
this study.

4.3 Modeling in Metabolomics Serverless Environments

METASPACE operates in production on an EC2 instance (r6a.2xlarge), processing datasets in 14 steps.
After these steps, there is an extra step called off-sample, that runs classification of datasets using
AWS ECS, a fully managed container orchestration service from AWS. AWS ECS runs within Docker
containers, as detailed in D2.3.

Here we describe the approach for automatic workload extraction from the pre-project off-sample
service, followed by a first characterization of the workload. Equipped with this data, we plan to train
a number of AI models that can help to achieve the following two tasks:

1. Mitigation of cold starts that can cause severe performance degradation of the inference ser-
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Figure 23: METASPACE pre-project off-sample architecture built upon AWS ECS.

vice; and

2. Optimal resource provisioning in order to find the optimal “sweet spot” between the public
cloud and on-prem edge resources in this use case.

At M18, we have set the monitoring infrastructure to extract the workload characteristics of the
METASPACE service in production and begun the investigation of the right AI models. We defer to
the next deliverable the detailing of the AI models and the corresponding improvements of the KPIs,
as this task is sill under intense investigation.

4.3.1 Workload Extraction

Here we describe the process to extract the workload information for model training. The extraction
of this information comes from several sources and is a representative example of information fusion.
As a first step, we describe how the pre-project off-sample in production works to better understand
where information comes from.

As of today, several daemons operate within METASPACE, with two key daemons responsible for
trace collection: four Python Lithops daemons and a control daemon called “update”. In particular,
the update daemon is the one in charge of running the off-sample service.

The execution flow is depicted in Figure 23 and follows the following steps:

1. The four Lithops daemons facilitates the simultaneous processing of four datasets, with each
daemon processing a separate dataset.

2. The Lithops daemons manage the 14 steps and perform some inter-step calculations.

3. The output of this pipeline is a collection of annotated molecules that are saved to a PostgreSQL
database.

4. The service generates a .png image for each annotated molecule. The image is archived in AWS
S3 object storage.

5. Upon the completion of a dataset processing by a Lithops daemon, the Lithops daemon sends
a message to a queue where the update daemon is subscribed.
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6. The update daemon handles the off-sample processing of the incoming datasets. The input are
the .png images generated by the prior step. These images are pushed to the AWS ECS service
for off-sample classification. The update daemon is able to process up to 4 datasets at the same
time, a dataset per off-sample thread.

7. To process datasets, the images are grouped into batches of 32 images. Batches are transmitted
to an HTTP endpoint in the AWS ECS service. To not overload the containers, every off-sample
thread manages up to 8 concurrent synchronous batches.

8. There is always a minimum of one AWS ECS container running the service, with a Falcon HTTP
server that listens to all incoming batches. Each AWS ECS container includes a parallel process
that sends resource usage values (e.g., CPU and RSS memory) once per second. These values,
along with the dataset ID, batch ID, and the time taken to load each image and classify it, are
logged by AWS CloudWatch for further analysis.

9. As described in deliverable 2.3, the auto-scaler can boot up additional containers if CPU usage
exceeds a certain threshold.

10. The Lithops daemon previously stored the annotated molecules in PostgreSQL. The SQL database
is normalized and the number of fields for each annotation is several dozens, resulting in very
slow SQL queries. For this reason, the update daemon is in charge of retrieving the annotations,
denormalizing the data and saving it to AWS Elasticsearch. Elasticsearch has a more optimized
way of handling read requests, especially for full-text search. When off-sample of the entire
dataset finishes, results are stored both in PostgreSQL and ElasticSearch.

From the daemons and AWS CloudWatch, the following set of workload files are produced:

• YYYY-MM_datasets: Information from PostgreSQL regarding dataset ID, image resolution (x,
y), number of annotated molecules, number of generated images and public/private status as
shown in Table 3.

ds_id x y annots imgs is_public
small.1k 132 148 1890 7369 False
medium.3k 157 147 2582 5806 True

Table 3: Dataset general information.

• YYYY-MM_dataset_start_finish: includes the date and time when a notification is sent from the
Lithops daemon to the update daemon, indicating the start of dataset processing as reported in
Table 4.

ds_id start finish
small.1k 2023-03-01 01:29:15.221671 2023-03-01 01:32:28.484376
medium.3k 2023-03-01 01:50:29.554324 2023-03-01 01:53:07.631446

Table 4: Start and finish times for the datasets.

• YYYY-MM_daemons: This file is generated by the update daemon and contains information
about the actual start and end times of processing through the off-sample service. An example
of the file format can be found here:� �

1 2024-01-01 16:18:55,904 - INFO - update-daemon[Thread-1] - queue.py:532 - [v] Sent {"ds_id": "2023-12-20
_03h38m48s", "action": "classify_off_sample", "stage": "STARTED"} to sm_dataset_status

2

3 2024-01-01 16:43:07,530 - INFO - update-daemon[Thread-1] - queue.py:532 - [v] Sent {"ds_id": "2023-12-20
_03h38m48s", "action": "classify_off_sample", "stage": "FINISHED"} to sm_dataset_status� �

Page 27 of 40



HORIZON - 101092646 CloudSkin
30/06/2024 RIA

• YYYY-MM_cloudwatch_logs: These are a number of logs files from AWS CloudWatch. These
files include log information from the AWS ECS containers. It includes info on the dataset ID,
the batch ID, container ID (@logStream), number of images (default 32), and execution times
and metrics. See Table 5 as an example.

@timestamp @message @logStream
2024-05-21
13:24:28.599

2024-05-21 13:24:28,598 - off-sample - INFO - Perf:
{’ds_id’: ’small.8k’, ’batch_id’: ’0AFE4699’, ’n_images’:
32, ’start_ts’: 1716297848.116, ’deserialization_time’: 0.009,
’save_images_time’: 0.062, ’predict’: 20.41, ’metrics’:
[{1716297848.494: {’cpu’: [37.8, 33.3], ’memory’: 20.8,
’inf_rss_mb’: 224.62890625}}, ...], ’end_ts’: 1716297868.599}

ecs/58c95beb

Table 5: Log entry details.

4.3.2 Workload Characterization

The above files are then transformed and merged to facilitate further analysis and become useful
for training a model. Concretely, we generate three type of files: datasets, batches and metrics. The
concrete fields on each file, along with their description can be found in Table 6, Table 7, and Table 8,
respectively.

Field Description Example
ds_id Unique identifier of the dataset medium.8k
ds_name Name of the dataset 2023-skin-cancer
message_sent Time at which the classification message

is sent to the off-sample service
2024-01-02 10:15:20.443575

started Time of start of dataset processing 2024-01-01 16:18:55,904
finished Time of end of dataset processing 2024-01-01 16:43:07,530

Table 6: Dataset information.

Field Description Example
ds_id Unique identifier of the dataset to which

the batch belongs
medium.8k

batch_id Unique identifier of the batch 9356b57d2db1
n_images Number of images of the batch 32
container_id Identifier of the container processing the

batch
ecs/a8ec806db

start_ts Start time of batch processing 1709248592.674
deserialization_timeTime taken to transform images from

base 32 to PNG
0.003

save_images_time Time taken dumping images to disk 0.004
predict Time taken for inference 11.107
end_ts End time of batch processing 1709248603.788

Table 7: Batch information.
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Field Description Example
batch_id Unique identifier of the batch to which

the metric belongs
9356b57d2db1

timestamp Local timestamp of the metric 1704189381.019
cpu[1...X] List of usage percentage of each CPU [51.5, 50.0]
memory Percentage of memory used 21.5
inf_rss_mb Memory RSS used 562.265625

Table 8: Metric information.

The collected data serves two primary objectives:

• Comparison between old and new implementation: in terms of latency, speedup, cost, as well
as performance per dollar between both implementations.

• Forecast spikes in activity: to train an AI model to anticipate and adjust dynamically the pool
of functions to mitigate cold starts and pre-allocate on-premises resources such as containers.

4.4 Modeling in Smart Agriculture Infrastructures

AI models play a crucial role in enhancing performance and optimizing resource usage within smart
agriculture infrastructures.

Agricultural data sources vary in complexity and resource demands. Simple environmental data
such as temperature, humidity or soil moisture require minimal processing power, while more com-
plex data like geospatial images demand significant computational resources.

These models need to leverage both cloud and edge resources, incorporating containers, virtual
machines (VMs), or serverless functions in the cloud; and containers or C-Cells at the edge.

The models aim to achieve two primary objectives:

• Effectively distribute workloads: The system must dynamically scale resources up or down
based on current workloads, redistributing tasks to edge resources or reallocating them to the
cloud as needed.

• Predict future workloads: By anticipating future demands, the system can provision resources
in advance to ensure optimal performance. For example, lower activity levels at night may al-
low edge cells to process datasets at a slower pace, while higher workloads or latency-sensitive
tasks during the day can be managed by more powerful cloud-grade machines.

There are different types of key metrics to be extracted, with different levels of granularity and
relation:

• General metrics about the dataspace: this includes number of requests, users logged in, dataset
providers and locations.

• Metrics from each dataset: format, size, type of processing tasks (e.g., sensor data processing,
NDVI index calculation, radiation calculation, geospacial image analysis etc.) and processing
time.

• Metrics from each resource: resource consumption patterns related to CPU, memory, disk, and
network usage. These metrics may be facilitated by KIO Networks platform.

• Dataset-resouce assignation: it is crucial to maintain a registry that tracks which datasets were
processed by which resources. Some datasets may be divided into chunks to be processed by
multiple resources, maximizing the usage of idle resources.
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By analyzing these metrics, we can establish patterns linking dataset processing requirements
and resource needs, aiming to minimize latency and maximize resource efficiency.

Prometheus can be employed to save metrics from various agricultural data sources. It supports
a wide range of exporters to gather metrics from different types of resources such as sensors, edge
devices, and cloud services. Furthermore, Grafana can be used to create comprehensive dashboards
to visualize the metrics, displaying real-time data, historical trends, and predictive insights. The use
of Prometheus will facilitate integration with the Learning Plance.

To enhance performance and optimize the dataspace design, we have studied two analysis mod-
els:

• Time Series Model for Performance Monitoring: This model is ideal for analyzing resource
consumption patterns and predicting future resource needs by examining their variations. It
helps identify trends, demand peaks, and potential bottlenecks, enabling proactive resource
management.

• Regression Analysis Model: This type of model is capable of predicting resource consump-
tion by establishing relationships between various performance metrics and resource usage. It
provides insights into how changes in the number of requests impact CPU and memory usage,
which is valuable for anticipating the effects of future design or workload changes.

Other modeling methods studied, such as container-based queuing models, machine learning,
and deep learning for automatic optimization, were initially discarded because their complexity ex-
ceeds the scope of the experiment.

As of now, the best model candidate is the Long-Short Term Memory (LSTM), due to the greater
data generation capacity offered by the KIO virtual platform. LTSM will has also been tested in other
use cases and can also be highly effective in the context of smart agriculture for several reasons:

• Predictive Accuracy: LSTM networks are capable of matching complex relations, which im-
proves their predictive accuracy.

• Handling Sequential Data: Agricultural data often exhibit temporal patterns due to seasonal
variations. LSTM models are designed to handle sequential data and can learn patterns over
long time periods.

• Proactive Resource Management: By predicting future workloads and resource requirements,
LSTM models enable proactive management of resources. For example, if a surge in data pro-
cessing is anticipated during harvest season, additional resources can be allocated in advance
to handle the increased load.

• Adaptability: The agricultural environment is dynamic, with conditions changing due to weather,
soil health, and crop cycles. LSTM models can adapt to these changes by continuously learning
from new data, thus providing more reliable predictions.

The focus will be in the development of a LSTM model, leaving the regression analysis (or other
candidate models) for a later phase of the project, if data is representative enough to be able to make
realistic predictions.
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5 Instrumentation and Data Retrieval in the Learning Plane

All the learning methods for decision making and resource management rely on retrieving data from
the different environments, including resource usage, QoS of applications, data usage and transmis-
sion, etc. This section introduces and advances the early efforts in Task T5.3 on instrumentation
towards data retrieval for modelling and prediction for smart management. Each subsection corre-
sponds to one use case in T5.4-T5.7.

5.1 Cloud-Edge Instrumentation using Kubernetes

The learning plane implemented for Kubernetes based cloud-edge application orchestration consid-
ers using the telemetry from different levels. For instance:

• Infrastructure level: From the infrastructure level, the learning plane can retrieve the system
and application resource usage from Prometheus, such as CPU, memory etc., Also, based on
the availability of the energy application and understand of the energy data, in the following
months we will enable the learning plane to take as well the energy consumption data of each
system.

• Application level: From the application level, the learning plane can monitor the application
stream QoS, such as fps, elapsed_time and pipeline_latency.

Figure 24: Telemetry for Learning Plane.

Currently, these data are extracted through CNX infrastructure and NBC observability stack (De-
scribed in D2.3) for the mobility use case. The required ETL pipeline comprises the following com-
ponents:

• Prometheus JSON exporter1: this exporter is responsible of formatting the JSON objects that

1https://github.com/prometheus-community/json_exporter
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the DLStreamer pipeline server application returns when querying its pipelines status API end-
point to Prometheus-compatible metrics and labels. When deployed with the Kubernetes Ser-
vice Monitor CDR enabled, the Prometheus operator stack available in the same cluster dis-
covers it and configures a scrape target to the pipeline server, retrieving new metric values on
predefined scraping intervals

• Prometheus SNMP exporter2: same as with the JSON exporter, this component is responsible
of walking through the provided OIDs of one or more scrape targets and formatting its con-
tent into Prometheus-compatible metrics and labels. This exporter is used by the Prometheus
operator stack to periodically retrieve the energy data from Cellnex Orion platforms

• PromCSV library3: a custom-made Python library that streamlines the process of querying
multiple Prometheus metrics via PromQL syntax and merging the results into a single Pandas
DataFrame or exporting it into a CSV file. This library relies on the promql-http-api4 library for
the heavy-lifting task of converting the Prometheus API response data to Pandas DataFrames,
and the maya5 library for dealing with natural datetimes. A Docker image is also available for
scheduled data export from Prometheus databases, useful when creating training datasets for
the Learning Plane

• Grafana dashboards: custom dashboards have been created to properly visualize and monitor
the extracted application data and cluster resources, only list a few in Figure 25:

Figure 25: Grafana - Pipeline panels.

5.2 Serverless Instrumentation using Lithops

Lithops Serve provides a comprehensive trace collection system, providing insights at various levels
of operation: executors, batches and images. Each dataset processed through Lithops Serve not only

2https://github.com/prometheus/snmp_exporter
3https://gitlab.bsc.es/datacentric-computing/cloudskin-project/cloudskin-learning-plane/-

/tree/main/libs/promcsv
4https://github.com/nir-arad/promql-http-api
5https://github.com/kennethreitz/maya
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yields classification results but also captures detailed traces of its execution process.
Although the original Lithops framework offered basic plotting functionalities, the exported data

from these plots was not available for telemetry monitoring and visualization. However, Lithops
Serve addresses this gap and outputs a timeline plot, represented as a sequence of bars in the form of
a Gantt chart, to visualize the start, duration, and completion of the executors over time. Figure 26a
presents a detailed timeline illustrating every step of the execution process. The steps are described
below:

• Host submit: when invoking multiple executors, a thread is created for each asynchronous call
to the AWS boto3 API. This timestamp is recorded just before the call within every thread.

• Function start: records the time where the serverless executor starts to execute the DL code.
This occurs after initialization and the loading of dependencies.

• Function done: records the disposal time of the executor.

• Status fetched: prior to function completion, the executor uploads its status to AWS S3. Lithops
periodically monitors the status of an executor by polling AWS S3, recording the time when an
executor is marked as terminated.

• Results fetched: Likewise, final results are automatically uploaded to AWS S3 and retrieved by
the Lithops orchestrator before the executor gracefully terminates. These results correspond to
the data returned by the Python return statement that terminates the executor, similar to what
happens with an AWS Lambda function:� �

1 def lambda_handler(event, context):
2 message = ’Hello␣{}␣{}!’.format(event[’first_name’], event[’last_name’])
3 return {
4 ’message’ : message
5 }� �

Intermediate results corresponding to the classification of batch of images are saved to AWS S3,
or can be sent back to the Lithops Serve orchestrator.

Alternatively, the histogram just shows the time that the function was running; in this case, in
AWS Lambda.
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Figure 26: Timeline and Histogram of Lithops Serve on AWS Lambda classifying a dataset (large.35k).

Prior to classification, the dataset undergoes partitioning into batches of a predetermined size
(default is 32). Each batch is assigned a unique ID. Batches are sequentially dispatched to executors,
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with the executor requesting additional batches from the orchestrator upon completion. Figure 27
illustrates the batch distribution at the end of the process, showing how batches are allocated as
executors become idle. Executors finish only when all batches are completed or assigned.
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Figure 27: Batch distribution among executors (medium.3k)

Executors also have an internal logging system to record every step of classification: download-
ing, transformation and inference of every image in batch. This information is recorded internally in
a file that after is transformed and incorporated in the results of the dataset. This data can then be
plotted as in Figure 27.
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Figure 28: Loading, preprocess and prediction of every image in a batch running on an AWS Lambda
executor

Furthermore, the new trace collection system provides data that can be processed to extract la-
tency, throughput, price and performance / $. This is the information used to develop the use case
Figures in D2.3.

Integrating the Learning Plane with Lithops Serve offers significant advantages, particularly fo-
cusing on the modeling and provisioning functionalities. While Lithops Serve collects data on the
status of running images, batches, and executors, it currently lacks a real-time monitoring system.
This capability will be implemented to enable the Learning Plane to effectively share critical infor-
mation, empowering it to make informed resource adjustments not only for incoming datasets but
also for existing datasets.
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A Prometheus integration for Lithips is currently under development, and will be employed to
collect and store metrics on Lithops Serve. Prometheus is well-suited for this task due to its powerful
data collection capabilities.
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Figure 29: Architecture of Prometheus on Lithops.

As can be seen in Figure 29, Lithops Serve orchestrator will include a Prometheus server to
collect metrics from executors. The Resource Provisioner invokes cloud functions and/or kubernetes
pods, each of them with an executor. Each executor has a profiler process that collects real time
metrics on CPU, memory, network and disk usage, latency, throughput, dataset size and batch size.
These metrics are registered for every executor and process within the executor. These metrics, once
collected are put in a Queue. In parallel, a sender thread gets the metrics from the queue and sends
them to the prometheus server via a configured endpoint (push gateway). Once in Prometheus,
metrics are saved in the internal database.

Unlike previous visualizations created with Python’s matplotlib library, the collected metrics will
be visualized using Grafana. Grafana offers great integration with Prometheus and excels in creating
dynamic, real-time dashboards. Figure 30 displays two types of metric representation.

(a) Timeline of consecutive executions. (b) CPU usage of an executor in time.

Figure 30: Examples of Grafana Dashboard metrics

The LP will query real-time data through the Prometheus HTTP API, providing information
about the entire orchestrator.

Furthermore, a predictive model is under development to use historical data on dataset arrival
times and sizes to forecast the arrival of the next dataset. Based on current resource (AWS Lambda
and Kubernetes pods) usage and historical trends, resources can be pre-warmed to be ready for the
next dataset.

5.3 Data Streaming Instrumentation with Pravega

In Pravega, we have built a complete metrics system that allows administrator and orchestrators to
reason about the performance of the system and react accordingly. In the following, we provide some
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technical details about the Pravega metrics service and the compatible systems and APIs to consume
and visualize metrics from Pravega:

• Metrics exporting (InfluxDB, Prometheus, StatsD): Pravega uses Micrometer6 as the underlying
metrics library. Pravega also provides our own API to simplify metrics access within the sys-
tem. The Pravega metrics service is initiated using the StatsProvider interface: it provides
the start and stop methods for the metrics service. It also provides startWithoutExporting()
for testing purposes, which only stores metrics in memory without exporting them to external
systems. Currently we have support for InfluxDB, Prometheus, and StatsD registries. The in-
ternal API that Pravega uses to interact with Micrometer metrics can be inspected in detail in
the official documentation7.

• Metrics visualization (Grafana, Prometheus): The metrics that Pravega produces can be visual-
ized via Grafana and Prometheus dashboards, among others. It is important that there are
multiple sources of metrics in Pravega that can be visualized and exploited by the Learning
Plane in CloudSkin. For instance, the system exports metrics about performance, including
latency of operations, throughput of the write-ahead log (i.e., Bookkeeper), or the data rate at
which Pravega is moving data to long-term storage. Moreover, Pravega exports metrics about
streams, so the Learning Plane may reason about the number of streams in the system and their
utilization (e.g., bytes or events per second), even at the segment level. Finally, Pravega also
exports metrics about the resource usage of Segment Store and Controller processes (e.g., JVM
statistics).

Figure 31: Dashboards to visualize metrics in Pravega.

In summary, Pravega metrics can be a powerful substrate to build intelligence for managing the
streaming infrastructure across the Cloud-Edge Continuum. Moreover, the technologies that the sys-
tem uses for metrics management and visualization are aligned with the proposal for the CloudSkin
Learning Plane, which facilitates integration.

5.4 Usage Instrumentation using Dataspace

The learning panel implemented for the dataspace considers two levels of telemetry:

• Infrastructure level. Operations Telemetry: Data will be collected about the infrastructure of
the data space, including CPU usage, memory, storage, and bandwidth consumption. System
crash and error logs will also be included.

KIO, as a partner involved in the CloudSkin project, provides the necessary resources for the
testbed utilized by ALT. These resources are based on the IaaS services we offer from one of
our certified TIER IV Data Centers, which is part of the network of cloud Edge computing
platforms we operate. The service provides a wide range of metrics within the management

6https://docs.micrometer.io/micrometer/reference/
7https://cncf.pravega.io/docs/latest/metrics/
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panels that are accessible from the console that ALT has access to, allowing monitoring of the
testbed’s status and performance.

Among the metrics available, the following ones stand out:

– CPU usage percentage rate (%)

– Memory-Guest Demanda

– RAM Memory usage percentage rate (%)

– Network-Data Receive Rate (KBps)

– Network-Data Transmit Rate (KBps)

– Network-Usage Rate (KBps)

– Virtual Disk-Aggregate of all Instances-Total IOPS

– Virtual Disk-Aggregate of all Instances-Total Latency (ms)

• Application level. Although the creation of an analysis and monitoring software panel is not
contemplated, values could be obtained from the application to facilitate the telemetry of the
platform, which could be crossed with infrastructure consumption data. Application level
telemetry can be focused on several levels to ensure efficient operation and optimal security
and performance:

– Security Telemetry: Access attempts (successful and failed), changes in permissions and
any other activity that may indicate a security risk will be monitored. This may include
monitoring for unauthorized access and detecting unusual patterns that could suggest an
intrusion attempt. This telemetry is not, in this mockup phase, one of the priorities of the
project, although it will be incorporated at a basic level.

– Performance Telemetry: Data will be obtained about the pages and actions launched (data
source loading, project creation, API calls). Cross-referencing this information with server
performance logs can help identify bottlenecks or performance issues that impact the user
experience.

– Usage Telemetry: This telemetry allows us to understand how users interact with the data
space and their frequency. In the current model it is a secondary objective, so only those
that are considered most relevant for the optimization of the platform will be applied, such
as access frequencies, leaving out telemetries of commercial interest.

– Integration Telemetry. Usage and performance of integrations will be analyzed through
data access mechanisms. This will include both access and integration error control.

When implementing these levels of telemetry, and although this use case is part of a research project,
compliance with related legislation, such as the GDPR in Europe, will be studied, reflecting our
concern for user privacy. Consequently, all personal data will be managed and stored securely, with
users informed about what data is collected and its motivation.
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6 Conclusions

This deliverable presents the learning methods to be used for infrastructure and workload manage-
ment. Firstly, we introduced the Learning Plane design and implementation and also came up with
a prototype specifying the usage of each component and how to customize them. Then, we pro-
posed different ML-based models for environment modelling, which can be used for different use
cases. In the end, the last section defined for each use case or scenario the data can be retrieved for
infrastructure and workload management.
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