GD Funded by

CloudSkin O the European Union

HORIZON EUROPE FRAMEWORK PROGRAMME

CloudSkin

(grant agreement No 101092646)

Adaptive virtualization for Al-enabled Cloud-edge
Continuum

D5.3 Integration of the Learning Plane

Due date of deliverable: 31-12-2025
Actual submission date: 29-12-2025

Start date of project: 01-01-2023 Duration: 36 months

Summary of the document

Document Type Report

Dissemination level Public

State v1.0

Number of pages 50

WP/Task related to this document | WP5 / T5.3, T5.4-T5.7(modeling part)
WP/Task responsible BSC

Leader Peini Liu (BSC)

Technical Manager Peini Liu (BSC)

Quality Manager

Robert Haas (IBM)

Author(s)

Peini Liu(BSC), Joan Oliveras Torra(BSC), Jordi Guitart
(BSC), Josep Lluis Berral (BSC), Ramon Nou (BSC), Jose
Miguel Garcia (ALT), Ratul Gracia (DELL), Hossam El-
ghamry (DELL), Alan Cueva (DELL), Reuben Docea
(NCT), Marc Sanchez Artigas (URV), Thomas Ortner (IBM)

Partner(s) Contributing

BSC, NCT, DELL, URV, ALT, IBM

Document ID

CloudSkin_D5.3_Public.pdf

Abstract

Report on the integration efforts for the learning methods
in the CLOUDSKIN stack, and the validation processes.
The produced framework, tools and prototypes will be
published as open-source software through public distri-
bution channels.

Keywords

Learning plane, machine learning, model training and val-
idation.

History of changes

Version | Date Author Summary of changes

0.1 01-10-2025 | Peini Liu Add TOC.

0.2 25-11-2025 | Peini Liu Add Section 2 Learning Plane.

0.3 05-12-2025 | Thomas Ortner Add Flowstate.

0.4 10-12-2025 | Peini Liu Update Section 2 Learning Plane.

0.5 11-12-2025 | Joan Oliveras | Add Section 3 Time series and regression models.
Torra

0.6 12-12-2025 | Joan Oliveras | Add Mobility use case model usages.
Torra

0.7 12-12-2025 | Raul Gracia Add Surgery use case model usages.

0.8 12-12-2025 | Marc Sanchez Ar- | Add Metabolomics use case model usages.
tigas

0.9 12-12-2025 | Jose Miguel Gar- | Add Agriculture use case model usages.
cia

1.0 15-12-2025 | Reuben Docea Update Surgery use case model usages.

1.1 26-12-2025 | Peini Liu Final version.

HORIZON - 101092646 CloudSkin

29/12/2025 RIA
Table of Contents

1 Executive summary 2

2 Learning Plane 3

2.1 Data-connector Framework 3

21.1 Agent Architecture L L 3

212 AgentModellnference L L o o 4

213 AgentSensors 4

214 AgentActuators L 5

215 AgentCommunication 5

2.2 Data-connector Demonstration 6

221 Experimental Settings 6

2.2.2 Smart Migration Scenario Settings0 0L 6

2.2.3 Data-connector Agent Implementation 6

224 Data-connector Agent Deployment 8

225 ExperimentalResults o Lo oo 8

23 Tutorial e 8

3 Learning Plane Models 9

3.1 FlowState: A novel State-Space based Time Series Foundation Model 9

3.1.1 FlowState Architectureo 10

3.1.2 SSMEncoder e 10

3.1.3 Functional Basis Decoder 11

3.14 Foundational model pretraining 12

3.1.5 Forecasting procedure L oo 12

3.2 Time-seriesmodels e 12

3.2.1 Autoformer e e 13

3.2.2 FEDformer (Fourier Enhanced Decomposition Transformer) 13

323 Informer e 13

3.24 TimesNet e e 14

3.25 LSTM (Long Short-Term Memory) 14

3.2.6 ETS (Holt-Winters Exponential Smoothing) 14

33 Regressionmodels 15

331 LinearRegression. 15

3.32 Random Forest e 15

3.3.3 XGBoost (eXtreme Gradient Boosting) 15

3.3.4 CatBoost (Categorical Boosting) 16

4 Integration of the Learning Plane 16

41 OVEIVIEW . . o v o e e e e e e e e e e e e e e 16

42 Usecase: Mobility 16

42.1 Problem Definition 16

422 DataCollection e e e 16

423 DataPreprocessing e 18

424 ModelTraining 19

425 Model Evaluation and Comparison 20

4.3 Usecase: Metabolomics e e 23

43.1 Problem Definition 23

43.2 DataCollection e 24

433 Model Training 26

43.4 Model Comparison and Evaluation 28

HORIZON - 101092646 CloudSkin
29/12/2025 RIA
4.4 Usecase: SUIZETY v vt ittt it 31
44.1 Problem Definition 31

442 DataCollection e 31

443 DataPreprocessing e 32

444 ModelTraining 33

445 Model Comparison and Evaluation 35

45 Usecase: Agriculture 38
451 Problem Definition 38

452 DataCollection e 39

453 Technologies and Core Components 39

454 ModelTraining 42

455 Model Comparison and Evaluation 45

5 Conclusions 48

ii

HORIZON - 101092646
29/12/2025

List of Abbreviations and Acronyms

API Application Programming Interface
CatBoost Categorical Boosting

CC Creative Commons

CPM Contiguous Patch Masking

Csv Comma-separated values

DOI Digital Object Identifier

ETS Holt-Winters Exponential Smoothing
FBD Functional Basis Decoder

FEDformer Fourier Enhanced Decomposition Transformer

FFD First-Fit Decreasing

FMs Foundation Models

FPS Frame per Second

GRU Gated Recurrent Units

LP Learning Plane

LSTM Long Short-Term Memory
MAE Mean Absolute Error

ML Machine Learning

MSE Mean Squared Error

NLP Natural Language Processing
QoS Quality of Service

SLA Service Level Agreement
SLO Service Level Objective
SOTA State-of-the-art

SSMs State Space Models
XGboost eXtreme Gradient Boosting

Page 1 of 50

CloudSkin
RIA

HORIZON - 101092646 CloudSkin
29/12/2025 RIA

1 Executive summary

This Deliverable D5.3 presents the integration of the Learning Plane. In the section 2, we first present
the final version of the Learning Plane’s architecture, and then propose the implementation architec-
ture of data-connector: an agent-based framework for autonomous ML-based smart management in
Cloud-Edge continuum. Moreover, we provide a demonstration of integrating the model outcomes
of T5.1 and T5.2 within the data-connector that can be used for the project use cases. In the section
4, we provide different ML models training and evaluating towards different management problems
for different usecases. The employment of those models in real scenarios and how this helps with the
business is explained in Deliverable D5.4.

Page 2 of 50

HORIZON - 101092646 CloudSkin
29/12/2025 RIA

2 Learning Plane

Artificial Intelligence and Machine Learning (AI/ML, or just ML hereafter) are becoming pervasive
and integrated into different kinds of intelligent applications, and the collaborative Cloud-Edge con-
tinuum has been introduced as an emerging trend to support their adoption into use cases. However,
managing these ML applications in the Cloud-Edge continuum is challenging due to the ML appli-
cation’s dynamic resource usage with different user loads and Cloud and Edge’s dynamic resource
availability. We envision machine learning methods that can be used for smart management in this
dynamic environment, but how to deploy and utilize them for the adaptation scenario in Cloud-Edge
continuum is unknown.

We propose an agent-based framework to enable autonomous smart management mechanisms
that can be broadly enabled in diverse adaptation scenarios. The agent acts as a data-connector!,
connecting different sources of data, utilizing ML models for decision-making and triggering adap-
tations in Cloud-edge platforms. A small case study shows the feasibility of our proposed data-
connector for smart migration of an ML workload in the Cloud-edge continuum. The result shows
that the smart migration-enabled Cloud-edge scenario has 11.9% ML application QoS(prediction
time) better than the Cloud scenario without migration. Moreover, with minimal customization,
the data connector agent can be adapted for more use cases, which will be shown in Section 4.

2.1 Data-connector Framework

In this section, we introduce the architecture of the Data-connector agent and its features. This agent
is a Scanflow agent[1] variant, with enhancements to abstract to different data and platforms, and
integrate ML strategies. Specifically, we define agent intelligence with model inference, triggers, and
actuators for smart workload management in a dynamic environment.

2.1.1 Agent Architecture

We use the concept of agent, which does not implement a global model or plan but only some sim-
ple behaviours. These behaviours allow the agent to observe the environmental changes proactively.
An agent includes a sensor that detects changes in internal and external states, an ML model that
responds to relevant observations, and an actuator that activates specific processes within the envi-
ronment or other agents.

Data-connector agents are the fundamental components to implement autonomous ML-based
smart management. Each agent is an independent computational unit that is able to run actions ac-
cording to state changes. Therefore, an agent can be defined as a set of state-to-action mappings (i.e.,
Agent = States(s) — Actions(a)), that is, state changes could result in the execution of actions (rec-
ommended by ML-based strategies). However, an agent usually cannot directly perceive the states
but compute them from observations o; using a function F. Also, the agent performs actions through
rules with the computed states s; (a; = R(s;)). Figure 1 shows the agent-environment interaction: At
time ¢, the agent computes the states s; from the observations o; using the function F. Then, it chooses
actions a; according to the rules R to achieve the agent’s goal.

Agent
st = F(oy) Environment
ar = R(St)

Figure 1: Agent-Environment interaction.

Scanflow agent implements its autonomy by defining strategies that include events, constraints,
and actions, expressed as 3-tuples Strategy = (Events, Constraints, Actions), specifically, the autonomic
management strategy is described as: when Event occurs, if Constraint is satisfied, then Action will

Thttps:/ / github.com /bsc-scanflow / data-connector

Page 3 of 50

HORIZON - 101092646 CloudSkin
29/12/2025 RIA

be executed. A Data-connector agent primarily uses ML-based strategies, so that the tuples become
Strateqy = (Data, Models, Constraints, Actions), specifically, the autonomic ML-based smart manage-
ment strategy is: load the Data, inference them with the Model for predictions or recommendations,
evaluate rules Contraints when generating decision-making, and then execute Actions on specific plat-
forms. The workflow of the Data-connector agent to use the strategies is shown in Figure 2.

Agent

model
inference Prediction/
ecommendation
Data If achieve
conditional > Ty

rules? l
Sensors (—N—/) Actuators

v v

Environment

Figure 2: Data-connector agent abstract workflow.

2.1.2 Agent Model Inference

To enable smart management, ML models are used to generate knowledge for the current system.
Depending on different use cases and different autonomous management requirements, the devel-
oper should gather the history data from their platform and train different models to analyse target
scenarios. After that, this model can be used in a pipeline or served as a service for predictions. For
example, Figure 3 (steps 1-3) shows that the data-connector agent can trigger an inference pipeline
to predict the QoS of an application. This proposed combination of model inference and the agent
leverages a distributed decision-making, optimizing performance and reducing the need of exten-
sive telemetry data transfers. This approach is particularly advantageous for application and nodes
where statistical predictions can be performed locally, mitigating the necessity for constant data com-
munication with centralized servers.

2.1.3 Agent Sensors

To actively monitor current States, data-connector agents are required to trigger tasks to detect useful
observations. Data-connector agent has different types of built-in triggers as Sensors, namely inter-
val triggers, date triggers, and cron triggers (see Table 1). In addition, basic triggers can be combined
using “and’ or “or” logic to produce more complex hybrid triggers. These triggers can be scheduled
at a specific time or time intervals to execute tasks so that agents could get required observations to
evaluate the changes of States. Note that each Scanflow agent contains an asynchronous I/0O sched-
uler with multiple queued tasks. Tasks are run by the scheduler in a thread-pool.

Table 1: Types of agent triggers.

Types Definition
Scheduled Interval Trigger at the specified frequency.
Triggers Date Trigger once on the given date and time.
Cron Trigger when current time matches all specified
time constraints (similarly to UNIX cron).

Data-connector has a flexible way to connect with different sources of data, such as real-time data
from Prometheus, artifacts from Minio, or different types of data from MLflow. Figure 3 (steps 4-5)

Page 4 of 50

HORIZON - 101092646 CloudSkin
29/12/2025 RIA

Trigger

Data-
connector
agent

[\ Actuator
Sensor POST /call_migration

POST /run_predictions,
(pipeline)

POST /get'_predictions (target)
(data)
/run_predictions /get_predictions @ /call_migration
Model Inference ‘ i 2l | ; Platforms |
) i.e., Scanflow i.e., Scanflow-
i.e., Scanflow API API server, Cloud- AP
o (F tracker(MLflow), ;
pipeline(Argo), \ Server Server edge Server
Seldon, Tfserving Prometheus,
Z Minio orchestrator
@run pipeline \ ‘/CD//
Kubernetes N
ETCD API Server reallocate_application

Figure 3: Data-connector agent implementation workflow.

shows a sensor to get_predictions and aggregate prediction results. Different use case will need to
prepare the relevant data and define their customized sensors.

2.1.4 Agent Actuators

After a change in States, agents need to perform Actions (i.e., a; = R(s;)) through Actuators to adapt
changes to the environment. Different use cases will need to define their operation primitives for
customized actuators and make sure the operations can be implemented or realized by the platform
they used in their testbed (i.e., Kubernetes, multi-clustering orchestrator, etc.). For instance, Figure
3 (steps 6-7) shows that an actuator’s call to migrate applications, the corresponding Cloud-edge
orchestrator/Kubernetes should accomplish this operation through their internal implementations.

2.1.5 Agent Communication

The Data-connector agent’s communication methods are aligned with the Scanflow agent. Below, we
introduce two different ways for the Data-connector agent to communicate with the environment:
through RESTful APIs and shared artifacts[2, 1].

¢ Interaction through RESTful APIs: In this approach, the sensors and actuators of an agent are
exposed as interfaces. The agent is registered into a service discovery system, allowing it to
call the well-defined interfaces from the environment data sources to get data through REST.
Additionally, the remote call leads to changes in the agent’s belief/state and ultimately calls
platform APIs to drive an action.

* Interaction through shared artifacts: The data-connector has a database for shared artifacts
within a knowledge base, which receives queries from the model inference pipeline and the
sensors, and delivers the results from its database. These data include the metadata and logs
from the prediction service/pipelines, as well as the metrics, scores, parameters, and differ-
ent versions of the ML model. For instance, the model inference process will download the
model from the database for inference, and the results will be aggregated as knowledge and
saved back into a database. This approach is mainly used for model inference within a Data-
connector.

Page 5 of 50

HORIZON - 101092646
29/12/2025

CloudSkin
RIA

2.2 Data-connector Demonstration

The previously proposed Data-connector agent is a framework that can be used for different use
cases and satisfy different autonomous management requirements. In this section, we build a use
case on top of Scanflow-Kubernetes platform and enable a data-connector agent to perform smart
QoS-aware migration for an image classification ML workload.

2.2.1 Experimental Settings

Platform Settings: Our experiments are executed on a three-node Kubernetes cluster, where the
control-plane consists of 12 cores, 48Gi; one worker nodes of 8 cores, 16Gi, and one edge node of 4
cores, 8Gi. Each node is a Openstack-based VM with Rocky Linux 9.3.

The Scanflow-Kubernetes platform is built based on Kubernetes v1.28.2 (Network: Calico v3.26.4,
Runtime: containerd v1.6.25, DNS: CoreDNS v1.10.1, Storage: etcd 3.5.9). Scanflow corresponding
toolkits are Argo workflow v3.5.2, Mlflow 2.9.2, Minio v5.0.11, and PostgreSQL 1.17.

Application Settings: We use a target ML-serving application for image classification. The ap-
plication is running a Resnet_18 model, wrapped within TorchServe and deployed by Kubernetes
Deployment controller. We are using a client sending pictures with a concurrency of two to the
TorchServe service and receiving classification results.

2.2.2 Smart Migration Scenario Settings

Figure 4 shows an example of smart migration using a data-connector agent. The data-connector
agent proactively calls model inference to predict the QoS of a target application in the cloud and the
edge, and also periodically watches the application QoS prediction results with a performance-cost
comparison policy to decide if triggering the application migration.

~

Control Data-
Plane connector
agent
Sensor

Actuator »

A 0 v

Data Sources Platforms
(Scanflow (K8s)
Tracker)

- /

Worker-0

Data Sources
(Prometheus)

Model
inference

>

Model
inference

Edge-0

Data Sources
(Prometheus)

Figure 4: Smart migration of TorchServe using data-connector agent.

The autonomous strategies of the agent for application migration are described in detail in Table
2. The proposed data-connector requires the Data Engineer team to enable the model inference and
provide custom functions for sensors and actuators.

2.2.3 Data-connector Agent Implementation

To implement the agent, custom functions of these main components should be developed, i.e.,
model inference, sensor, and actuator.

Pre-steps: Pre-steps mainly contain data collection and model training. The model used for QoS
prediction should be pre-trained. A TorchServe application runs in both cloud and edge and each of
the nodes has dynamic resource availability over time. Then we use these node resource usage data
and the application prediction latency data to train a Random Forest(RF) model. The trained model

Page 6 of 50

HORIZON - 101092646 CloudSkin
29/12/2025 RIA

Table 2: Agent autonomous management strategy

Agent Analyzing and Planning Strategies
Data-connector agent | Analyzing Strategy: QoS_predictions

WHEN intervalTrigger(5min, QoS_prediction(data))
IF successful_call

THEN runWorkflow(prediction-pipeline, data)
Planning Strategy: migrate_app

WHEN intervalTrigger(5min, watch_app_qos)

IF target_node_app_qos > current_node_app_qos
THEN Call(Platform-API : migrate_app)

is saved and can be used by the data-connector agent for QoS predictions. More models accepted in
the data-connector can be found in the Section 3.

Model inference: Model inference is to use the pre-trained model for predictions. In our imple-
mentation, we define a model inference that Loads data uses Prometheus API to get the local node
resource usage data in the last time window, preprocesses the unknown values etc., and predicts the
application QoS in the edge and cloud using the pre-trained RF model. Note that the model inference
can be distributed into the edge and cloud if the data is not aggregated as shown in Figure 4.

Sensor Sensor defines which data in the shared artifacts the agent should watch, and the policy
to decide if triggering the actuator. Listing 1 shows the agent is watching the QoS predictions and
having a policy of performance cost trade-off (i.e., performance/cost). If QoS constraints are satisfied,
chooses the node with the best placement recommendation. Listing 2 shows the frequency of this
watch, and how the sensor can mount a timer, in this case 1 minute.

r#e:ca,mple 1: watch app oS predictions

@sensor (nodes=["predictor"])

async def watch_qos(runs: List[mlflow.entities.Run], args, kwargs):
4 qos = 0

5 input_data = get_qos()

6 if input_data:

qos, node_index = choose_better_nodes(input_data)

W N

8 if qos_constraints(qos):

9 await call_migrate_app(max_qos_index, "icresnet", "torch-deployment")
10 else:

11 logging.info("all machine can mnot achieve qos sla, no actions")

12 else:

13 logging.info("no data in last check")

14 return max_qos

Listing 1: Custom sensor to get app QoS predictions and enable recommendation policy

1| trigger = client.ScanflowAgentSensor_IntervalTrigger (minutes=1)
2| sensor = client.ScanflowAgentSensor (
name=’watch_qos’,
4 isCustom=True,
5 func_name=’watch_qos’,
¢ trigger=trigger
71)

Listing 2: Set trigger to watch_qos sensor
Actuator and Platform Actuator is used to connect different platforms to execute migrations. In our

use case, we use native Kubernetes to deploy our application, thus the migrate operations should be
done by using Kubernetes API. Listing 3 shows the migration operations execution, where the agent

Page 7 of 50

25

29

HORIZON - 101092646 CloudSkin
29/12/2025 RIA

can generate a patch of the nodeSelector for a target pod to update the application deployment, so
that the application can be finally migrated from one node to another.

async def call_migrate_app(max_qgos_index, namespace, deployment_name) :
nodeName_list=[’cloudskin-k8s-control-plane-0.novalocal’,
’cloudskin-k8s-worker-0.novalocal’,
’cloudskin-k8s-edge-worker-0.novalocal’]
Prepare the patch
patch_body = {

"spec": {
"template": {
"spec": {
"nodeSelector": {"kubernetes.io/hostname":nodeName_list[int(max_qos_index)]}
}
}
}

}
logging.info(f"agent is patch deployment to node, - {patch_body}")
#connect k8s
config.load_incluster_config()
api_instance = client.AppsV1Api()
try:
api_instance.patch_namespaced_deployment (
name=deployment_name,
namespace=namespace,
body=patch_body
)
logging.info("update_deployment_with_patch succeeded")
return True
except client.api_client.rest.ApiException as e:
logging.error (f"update_deployment_with_patch failed: {e}")
return False

Listing 3: Custom actuator to connect k8s platform

2.2.4 Data-connector Agent Deployment

Model inference deployment Previously we mentioned the model inference which can be de-
ployed using the Scanflow pipeline, similar to an Argo workflow. If a use case requires customized
model inference as well as its deployment, other online serving solutions like Seldon, Torch, or Ten-
sorFlow Serving can be used.

Agent service deployment The central agent has an HTTP server, so it can be deployed as a ser-
vice in Kubernetes environment. Additionally, the shared artifacts knowledge database should be
accessible from both the edge and the cloud.

2.2.5 Experimental Results

In this section, we evaluate the effectiveness of our data-connector agent in a scenario of application
smart migration. In particular, the migration of a TorchServe-based image classification application
is done according to the application QoS smart prediction and performance-cost trade-off policy in a
dynamic cloud-edge continuum.

Figure 5 shows the application QoS (i.e., image classification prediction time latency) trends of
two runs in Cloud and Cloud-edge scenarios. The red one is a baseline which shows all the requests
processed in the Cloud. The blue (the Cloud) and green (the Edge) ones show all the requests pro-
cessed in the Cloud-edge continuum, where application remains in the Cloud at night due to a high
cost of energy in the Edge, and in the daytime, application can be migrated between Cloud and Edge
based on the QoS prediction.

Figure 6 shows the distribution of application QoS (i.e., image classification prediction time) in
Cloud and Cloud-edge scenarios, and the average prediction time latency of Cloud-edge scenario is
11.9% better than Cloud scenario.

2.3 Tutorial

Learning Plane development and deployment This tutorial demonstrates the development and
deployment of the Learning Plane in a Kubernetes environment. The recorded screen (see Figure 7)

Page 8 of 50

HORIZON - 101092646 CloudSkin
29/12/2025 RIA

1000} — Cloud Scenario
= Cloud-Edge Scenario (Cloud)
— Cloud-Edge Scenario (Edge)

Prediction Time (ms)

12 16 20 24
Normalized Time

Figure 5: Application QoS (prediction time latency) trends in Cloud and Cloud-edge scenarios.

1000 Nl
800
600

400

Prediction Time (ms)

200

Cloud Cloud-Edge
Scenario

Figure 6: Distribution of application QoS (prediction time latency) in Cloud and Cloud-edge scenar-
ios.

is divided into two sides to showcase the real-time Learning Plane deployment. The left side shows a
Jupyter Notebook that contains all metadata of development and deployment of the Learning Plane
targeting a mobility use case, and the right side shows a terminal connected to the cloud-edge infras-
tructure that shows the Learning Plane creation in real time.

Detailed tutorial can be found in the open repository: https://github. com/bsc-scanflow/data
-connector/tree/main/tutorials/cloudedge-proactive-migration

3 Learning Plane Models

In the Learning Plane, multiple models are developed and used for diverse purposes, demonstrating
its adaptability for different use-cases and goals. The section below introduces the different models
that are developed or used within the Learning Plane, we provide a brief theoretical overview of
each method, deep-diving in FlowState as a novel model architecture created within the project, we
highlight the modelling principles and mathematical foundations behind all models used.

3.1 FlowState: A novel State-Space based Time Series Foundation Model

As mentioned in Section 2 ML models are ubiquitously found in many aspects of our daily lives. Es-
pecially foundation models (FMs), have received extensive research interest and are today employed
in various natural language processing (NLP) tasks. However, despite their astonishing performance
in NLP, FMs struggle to be applied to time series processing. Although NLP and time series process-
ing share similarities, for example both are sequence processing tasks, there are major differences. In
particular, the atomic unit of information in both tasks, a token in NLP and an individual data point
in time series, carries substantially more information in NLP than in time series. Furthermore, time
series data can be multivariate and vary strongly across tasks, e.g., the number of incoming requests
over time can look entirely different for a metabolomics or a video processing application.

Page 9 of 50

https://github.com/bsc-scanflow/data-connector/tree/main/tutorials/cloudedge-proactive-migration
https://github.com/bsc-scanflow/data-connector/tree/main/tutorials/cloudedge-proactive-migration

HORIZON - 101092646 CloudSkin
29/12/2025 RIA

fog_user@edge:~
fog user@edge:~87x56

DATA-CONNECTOR [SSH: CELLNEX-UBUN... b
ouTLINE

ates
er based on the built

r Kubernete: hat and planner

s ar
the scanflow-cloudedge-proactive tion-ci-dataeng

e}-{build app.team name}

TIMELINE
 S5H: cellnex-ubuntuvm-1-mpalacin |] dats-co

Figure 7: Learning Plane tutorial for mobility use case: Proactive Migration.

Therefore, other model capabilities are required for the time series domain, which resulted in
different model architectures to emerge as state-of-the-art (SOTA). For example, while FMs for NLP
have so far undoubtedly been dominated by the transformer architecture [3], the same architecture
is performing poorly in time series tasks [4]. Researchers have uncovered better architectures, based
on linear layers that mix over time and features [5, 6] in an alternating manner. More recently, state
space models (SSMs) [7] have emerged as viable alternatives that currently represent the SOTA in
several time series tasks.

3.1.1 FlowState Architecture

We developed FlowState [8, 9], an encoder-decoder architecture, employing an S5-based [10] encoder
and a functional basis decoder (FBD). Figure 8a shows an overview of its architecture. The input
time series with length L is first normalized in a causal manner. Afterwards, the normalized inputs
are embedded linearly and then provided to the SSM encoder directly without any patching, see
Section 3.1.2. Importantly, whilst the time series before being processed by the SSM are considered
to be in the feature space, where each element of the input represents features of the time series,
the SSM encodes this information into a coefficient space, where it operates on time-independent
coefficients of continuous basis functions. The final output of the SSM encoder forms the basis for
the FBD, see Section 3.1.3 for details, whose outputs are then inversely normalized, using the inverse
method of the input normalization, and form the forecasts of our model. Importantly, the FBD maps
from the coefficient space back to the feature space to provide the forecasts. Furthermore, the SSM
encoder, as well as the FBD are controlled by an additional scaling factor s, that allows to adjust
these components to the sampling rate of the input data.

3.1.2 SSM Encoder

FlowState utilizes a stack of S5 layers to form the SSM encoder, see Figure 8b. One S5 layer I consists
of an S5 block, followed by an MLP. The dynamics of the S5 block can be described through these
governing equations:

=Alsl | + B! 1)
i+ Dx! 2)

Page 10 of 50

HORIZON - 101092646 CloudSkin

29/12/2025 RIA
- Input 29, Sf
1
N 1
Im —» Cawsal) Bmbedding [—s[sSM Encoder|-2LeFBD —» [TV _Ca“_sal—J w
X Normalization Normalization — »
1 L T 1 L T
Feature Space [Trainable parameters Coefficient Space
b SSM Encoder c Functional Basis Decoder (FBD)
5 5] 5
—| || E] —| 2|
a a a c1 X
Skip connection Zl ®
2
oy = |2 X —»
S5 block 1 MLP : .]5'"""""":["'
: iscretize
oy | [t = A e nat| folseom. | e Lo ® wih A
Input hlL = Clslt +]f)lmifl o (Wlh]t’ + bl) Cp X

Figure 8: Architecture overview. a Overview of the FlowState architecture. The input context in the
feature space (orange color) gets normalized, embedded and then processed by the SSM encoder.
The SSM encoder transforms the input into the coefficient space (blue color) and provides the final
encodings to the functional basis decoder, which then produces the final forecast. Modules with
trainable parameters are highlighted in black rectangular blocks. b The SSM encoder consists of N
S5 layers, each composed of an S5 block extended with an MLP layer. A skip connection is used to
allow inputs to propagate also to later encoder layers. ¢ The functional basis decoder interprets the
outputs o} of the SSM encoder as coefficients of a functional basis and creates a continuous output,
which can be sampled at regular intervals A to produce the forecast.

where Al € RP*P, B! € R*P, C' € RP*H and D! € R°*H are the state transition, the input, the
output and the skip connections matrices of layer I/, m and n are the hidden state size and the output
size of the SSM block and s! and h! are the state and the output of the SSM block at timestep t. Note
that the input is denoted as x). As reported in [10], the matrices of the S5 block ! can be computed as

Al M B —A" (A-1)B,C' =C,D' =D,

where Al € RP*P B! € R*P, € € RP*H and D! € R*H are the actual trainable parameters of the
S5 and initialized using the HiPPO method [11].

3.1.3 Functional Basis Decoder

For the functional basis decoder, we take inspiration from how SSMs are initialized from an input
sequence. The HiPPO approach ensures that their hidden state expresses coefficients of a polynomial
basis, which optimally approximates the input sequence. In particular, [12] demonstrated a possibil-
ity to use the hidden state of their SSM at timestep t to reconstruct the input sequence until t with a
functional basis. We adopt this approach for our decoder, but instead of extracting coefficients that
can be used to reconstruct the input, we use a continuous functional basis to construct the forecast
from the final outputs of the SSM encoder oY, see Figure 8c. In particular, our proposed FBD inter-
prets the final outputs of the SSM encoder, oY, as coefficients of a functional basis, which can in turn
be used to produce a continuous output function. To obtain the forecast with a desired quantization
A, this continuous output is then sampled at an equally spaced interval, with the spacing A. The FBD

Page 11 of 50

HORIZON - 101092646 CloudSkin
29/12/2025 RIA

can be formalized as follows:

i = OIL\{i (3)

y =) cipi(a,b) 4)
i=1

i) = sample(i, A), 5)

where p;(+, -) is the i-th basis function evaluated at an interval [a, b], 7 is the continuous forecast and
sample(-, A) samples the argument equally spaced with A.

Our functional basis decoder offers several key advantages. Firstly, it produces a continuous
forecast, which can then be sampled with any desired sampling rate. Secondly, it draws inspiration
from a well-established procedure to map from coefficient to feature space, and thus can leverage
various functional basis functions, depending on the task. For our main experiments, we use the
Legendre polynomials to be consistent with the SSM input encoding used by the HiPPO initialization.
Another viable option is to use the Fourier basis functions to better match periodic signals. Finally,
and most importantly, it enables the decoder to produce forecasts at the correct sampling rate, based
on the current parameter A. Note that although we introduce the FBD as part of FlowState, it is a
separate component and can be combined with other encoder architectures as well.

3.1.4 Foundational model pretraining

We pretrain FlowState as a foundation model on the GIFT-Eval-Pretrain corpus, a large collection of
data consisting of time series from various domains and with diverse sampling rates. The individual
time series in this corpus may also contain a varying number of channels. Since FlowState is trained
as a foundation model, which needs to deal with different number of channels during the pretraining
and the later inference phase, we treat all time series during pretraining as univariate, separating the
individual channels. However, this approach has the drawback that channel correlations may not
properly be taken into account.

In addition to the real time series data from the corpus mentioned above, we added synthetic
time series data generated via Gaussian Processes, following the methodology of KernelSynth [13]
to both corpora. All data—real and synthetic—is further enhanced using augmentation techniques
introduced in [14].

Finally, to enable efficient training of FlowState and to enhance its robustness to varying context
lengths, we introduce an advanced foundation training scheme based on multiple parallel predic-
tions, that is described in detail in Appendix A of [9].

3.1.5 Forecasting procedure

FlowState creates patch-based predictions for the target window. If the target windows is larger than
the size of an individual forecasting patch, several such patches can be combined in order to form
extended forecasts. During this autoregressive forecasting, the outputs produced by FlowState are
appended to the previous context. When done naively, this procedure can result in poor performance,
as the model will treat the already produced forecasting patches as ground-truth data. In order to
counteract this, we employ a technique called contiguous patch masking (CPM), which is described
in detail in Appendix A.8 of [9].

3.2 Time-series models

Time-series models aim to predict future values of a sequence by exploiting its temporal structure.
These methods operate directly on ordered observations and learn patterns such as trends, season-
ality, periodic recurrences, and long-range dependencies. Modern architectures extend classical sta-
tistical formulations by incorporating decomposition techniques, frequency-domain representations,
and attention mechanisms, enabling flexible modeling of both local and global temporal dynamics.
This family of approaches treats forecasting as a sequence learning problem, where the objective is to
map past observations to a distribution or point estimate of future values.

Page 12 of 50

HORIZON - 101092646 CloudSkin
29/12/2025 RIA

3.2.1 Autoformer

Autoformer introduces two core components: a series decomposition block and an Auto-Correlation
mechanism. The decomposition block progressively separates each input sequence into trend and
seasonal parts. Given an input sequence x, a moving-average operator MA(-) extracts the trend
where s is the seasonal (residual) component. This decomposition is applied at every layer of the
encoder and decoder. The standard dot-product attention is replaced by the Auto-Correlation mech-
anism, which captures period-based dependencies through time-delay correlation. For query and
key sequences Q, K € RE*4 the correlation between Q and the t-shifted K is defined as:

t=MA(x), s=x-t

L
Corr(Q,K) =) Q¢ - Ki—+.
t=1

Autoformer selects the top-k dominant delays and the final Auto-Correlation operator aggregates
the correspondingly shifted values of V:

P = Top—k ({Corrr(Ql K)}§:1) '

AutoCorr(Q, K, V) =) Softmax(Corr¢(Q, K)) - Shift(V, 7).

TeP

This time-delay aggregation allows the model to emphasize periodic temporal structures, enabling
efficient long-term forecasting with sub-quadratic complexity compared to self-attention. For further
details, find the original paper [15].

3.2.2 FEDformer (Fourier Enhanced Decomposition Transformer)
FEDformer combines series decomposition with frequency-domain modeling. As detailed in [16],
each sequence is decomposed into trend and seasonal components:

x=t+s, t=MA(x), s=x—t

To capture global periodic patterns, the seasonal component is transformed using a discrete Fourier
transform:

T-1
ék — Z S e—kat/T’
t=0

and FEDformer retains only a truncated subset of dominant frequencies K through frequency spar-
sification. Self-attention is applied over this compressed frequency representation instead of the full
time-domain series, reducing complexity while preserving long-range dependencies. The seasonal
output is reconstructed via an inverse Fourier transform:

gt — Z ék ekat/T‘
kek

3.2.3 Informer

Informer [17] introduces ProbSparse self-attention, which exploits the observation that only queries
with large attention magnitudes contribute significantly to the output. Given the standard scaled
dot-product attention

Att(Q, K, V) = softmax < Qg) Vv,

Informer selects a sparse set of dominant queries U/ by keeping only those with top-u largest ¢;-norm
scores:

U = Top—u ([|Qll1),

Page 13 of 50

HORIZON - 101092646 CloudSkin
29/12/2025 RIA

reducing the attention computation from O(L?) to O(LlogL). Attention is then computed only on
this subset, yielding the ProbSparse operator:

Att,ob(Q, K, V) = softmax(QuKT> Vv
prob \’<s I\, \/H .

Informer further employs a generative-style decoder that progressively predicts future points, en-
abling efficient long-horizon forecasting.

3.2.4 TimesNet

TimesNet [18] models each univariate series by reshaping it into a set of 2D temporal patches and
applying period-specific convolutional kernels. For a given period p, the sequence x is segmented
into patches X(P) and processed by a 2D convolutional block:

h) = Conv,, (X(p)) ,

producing multi-period features that serve as learned temporal basis functions. These features are
then aggregated across all considered periods P:

peP

enabling the model to capture complex multi-frequency and long-range temporal patterns in multi-
variate sequences.

3.2.5 LSTM (Long Short-Term Memory)

The Long Short-Term Memory (LSTM) network [19] is a recurrent neural architecture designed to
capture long-range temporal dependencies by incorporating an explicit memory cell with gated up-
dates. At each time step ¢, given an input x; and the previous hidden and cell states (h;_1, ¢;_1), the
LSTM computes input, forget, and output gates:

ir = c(Wix¢ + Ujhy_1 +b;), fi = c(Wx; + Ushy 1 + by),
o; = o(Wox; + Ush; 1 +by),
together with a candidate cell update:
¢ = tanh(Wex; + Uch;—1 + b,).
The memory cell and hidden state evolve according to
=01+ O, h; = o; ® tanh(¢;),

where o(-) denotes the logistic sigmoid and ® element-wise multiplication. This gated structure
mitigates vanishing-gradient effects and enables LSTMs to model nonlinear, long-range temporal
patterns in sequential data.

3.2.6 ETS (Holt-Winters Exponential Smoothing)

The ETS framework models a time series through latent level, trend, and seasonal components, pro-
viding an interpretable classical baseline. In the additive Holt-Winters formulation, the observation
is decomposed as:
Yi =+ by + st
The components are updated recursively using exponential smoothing:
b= o (yr —st-m) + (1 —a)(b—1 + br_1),

by =Bl — L) + (1 —B)bi_1,

st =7y —)+ (1 —7)st—m,
where «, B, and 7y are smoothing parameters and m is the seasonal period. The h-step-ahead forecast
is:

Deon = by +hby + 50y

Page 14 of 50

HORIZON - 101092646 CloudSkin
29/12/2025 RIA

3.3 Regression models

Regression models treat prediction as a supervised learning problem, in which an output variable is
modeled as a function of an input feature vector. These approaches assume that the relevant infor-
mation can be summarized through a set of explanatory variables, and they learn the mapping from
features to responses using statistical estimation or ensemble-based procedures. Parametric models,
such as linear regression, impose a global functional form on the relationship, while non-parametric
methods, such as tree ensembles, capture more general non-linear dependencies. This formulation
provides a flexible and widely used framework for predictive modeling across diverse domains.

3.3.1 Linear Regression

Linear regression models a real-valued response as an affine function of an input feature vector.
Given z € R?, the model assumes

5 T

y=Pot B z
where By € R is an intercept term and B € IR” are coefficients. These parameters are typically
estimated by minimizing the empirical squared-error objective over a training dataset:

rrun Z —Bo— B z)>

Pop i=1
This yields a parametric, globally linear predictor with a closed-form solution under mild assump-
tions, offering interpretability through the sign and magnitude of the learned coefficients and serving
as a standard baseline for regression tasks.

3.3.2 Random Forest

Random Forests generalize this idea by replacing the single linear mapping with an ensemble of
decision trees, each partitioning the feature space into regions and assigning a constant prediction
within each region. A single regression tree implements a piecewise-constant function

Tm(Z) - ZCm,r]I{Z € Rm,y},

where {R,,,} are regions defined by axis-aligned splits on the features and ¢, , are leaf predictions.
A Random Forest averages the outputs of M such trees trained on bootstrapped samples and random

feature subsets:
1 M

80(z) = 37 L Tu(2).

m=1

This construction yields a flexible, non-parametric estimator that can approximate complex non-
linear relationships between telemetry and latency, while being relatively robust to noise and over-
fitting.

3.3.3 XGBoost (eXtreme Gradient Boosting)

XGBoost fits an additive model of regression trees f; € F by minimizing a regularized empirical risk:

T

n T
9i =Y fr(xi), r{}f?;é(%zﬁi) + Y Q(fe),

t=1 t=1

with a common tree regularizer Q(f) = v|L|+ 5 Licr w? (leaves L, leaf weights w;). At step t, it

uses a 2nd-order Taylor expansion around y(t Y,

if(yz,yf Ut filx) Zn:(glft (xi) + Shifi(x:)?),

=1 i=1

Page 15 of 50

HORIZON - 101092646 CloudSkin
29/12/2025 RIA

where g; = agﬁ(yi,]}i) and h; = 855 (vi, 7:)- Eor a fixed tree structure, each leaf j has aggregate
Gj = Lier, &, Hj = Lie, hi, and optimal leaf weight

yielding the split gain used for greedy tree growth:

Gan= L(CL_, Gk __ G _
M=o \H 1 "Hr+A H+A) T

3.3.4 CatBoost (Categorical Boosting)

CatBoost is also gradient boosting over trees §; = Y.L ; fi(x;) minimizing Y, £(y;, 7;), but it is de-

signed to reduce target leakage and prediction shift with ordered (permutation-based) techniques.

For categorical features it uses ordered target statistics computed along a random permutation 7:
Y rl)<ni), xip=x Yji T AP

TS(i) = ’
Z] 7e(f)<m(i), xjp=xix 1+a

where p is a prior (e.g., global mean), 2 > 0 is a smoothing strength, and only “past” examples in the
permutation contribute. For boosting, CatBoost uses ordered boosting: when computing gradients
for example i, it conceptually uses a model trained only on earlier items in the permutation:

M _ 2 4y g
8i" = 55vi9) bt
with y(ji‘” denoting the prediction from a model built without “future” examples relative to i in 7.

4 Integration of the Learning Plane
4.1 Overview

Table 3 shows the summary of the usage of LP in the use cases. Each use case has provided a manage-
ment requirement (e.g., resource allocation, service autoscaling, service migration etc.), how Al can
be used for the use case (e.g., predict application latency, predict job execution time etc), and which
dataset and models have been used to solve the management issue.

In the following sections, each use case introduces the problem requiring Al, and the data col-
lected for model training, and detailed data preprocessing and model training and evaluation.

4.2 Usecase: Mobility
421 Problem Definition

Learning Plane has been enabled in a Mobility Usecase, empowering Cellnex businesses undergoing
digital transformation to achieve higher operational efficiency. In specific, we present ML models
to predict QoS of Cellnex Video-Analytics application service in a Cloud-Edge continuum. This
model can help Cellnex to anticipate the QoS of the service and do proactive service migration be-
tween Cloud and Edge to achieve better service performance and saving costs.

4.2.2 Data Collection

By understanding the Cellnex user history pattern, we have emulated 8 days of workloads with a
different distribution on Cellnex infrastructure to collect data. Each emulated day is repeated at least
10 times.

¢ Each day has a different workload distribution queue.
¢ The number of concurrent workloads ranges from 0 to 5, corresponding to the number of online

cameras actively sending data to the VA application.

Page 16 of 50

HORIZON - 101092646

CloudSkin

29/12/2025 RIA

Table 3: Summary of the usage of LP in the use cases at M36.

Use case Al usage Dataset Models
Mobility Dataset 1: Application QoS The models FlowState,
(Service . . data(i.e., fps, latency), Informer, Autoformer,
Migration) * QoS-based migration of a Application and cloud-edge | FEDformer, TimesNet,
Yldeo analytics appllcatlon resource usage data(i.e., LSTM, ETS, Linear
in cloud-edge environments. | cpy, memory usage) both Regression, Random Forest
15/05/2024-05/06/2024. are evaluated to predict the
application latency QoS for
Dataset 2: Application QoS Dataset 1 and 2.
data(i.e., fps, latency),
Application and cloud-edge
resource usage data(i.e.,
CPU, memory usage) both
29/07/2025-06/10/2025.
Metabolomics 2024-02-XX.cloudwatch.log; | Exhaustive analysis of the
(Resource . . 2024-02_daemon.log; training data using multiple
Allocation) ¢ Cost-d.rlven autoscaling for | o.\4)1 0 5k; small.1k; models, including FlowState,
bf‘tCh 1nfer.e1.1ce pn Faa§, medium.3k; medium.6k; LSTM, and GRU, indicates
aimed at mitigating cold medium.8k; medium.15k; that the 0f£SampleAl
starts and reducing job large.30k; large.35k; workload is highly
completion times under a large.60k. unpredictable. None of the
predefined bUdSet m tested models were able to
contrast to reactive reliably forecast either job
ECS-based scaling without arrival times or the number of
cost control; and requests per job.

* Privacy-preserving and Linear regression is
latency-aware resource employed to estimate the total
provisioning on-premises, aggregated latency, enabling
enabling smart the online determination of
pre-allocation of confidential the number of serverless
containers. executors per classification

job, while ensuring that
performance is maximized
and the cost SLO is respected.
Surgery Telemetry collection of Multi-dimensional
(Resource . GPU/CPU Al model bin-packing model to allocate
Allocation, * Smart resource allocation of utilization; NCT Al models across
Service Al models at the Edge. servers.
Auto-scaling) . . NCT surgery room usage
& * Predlct'lve _auto-scalmg of traces; B & LSTM models trained with
streaming infrastructure. NCT sur tilizati
gery room utilization
Cholec80 dataset, traces for auto-scaling
GStreamer videotestsrc Pravega instances.
Agriculture Agricultural (Agricultural XGBoost was used to predict
(Resource . . data analysis - Campo de job execution time from input
Allocation) * Automatic resource scaling Cartagena). data metadata and resource
management, Alis used o | Enyironmental and configuration parameters.
estimate the comp uting infrastructure datasets from
resources required to the agricultural and The performance was
execute an agriculturaland | o\vironmental dataspace compared against CatBoost as
enVlr(?nmental pipeline that (Experiment 1). an alternative
combines sensor streams Geospatial Sentinel data. gradient-boosting approach.
with geospatial datasets.

Page 17 of 50

HORIZON - 101092646 CloudSkin
29/12/2025 RIA

¢ 8 hours per day with 30-minute intervals between workload changes.
* Workload processing duration applies a random deviation between 10 and 60 seconds.

We have collected two datasets from Cellnex infrastructure that reflect different operating condi-
tions and stages of the Cloud-Edge infrastructure.

Dataset 1: Baseline Telemetry Dataset The first dataset consists of the collected telemetry during
normal operation of the system at the beginning of the project. It includes the multivariate time
series of cluster-level metrics shown in Table 4, together with temporal features (e.g., time of day)
extracted to capture periodic patterns in resource usage and latency. This dataset represents the
standard configuration of the platform and serves as the primary source for training and validating
the forecasting models.

Dataset 2: Reduced-Capacity Edge Scenario The second dataset captures a modified operational
setting where the Edge server’s computational capacity was intentionally reduced. Due to an up-
grade and migration of the physical hardware, we observed that the Edge hardware used by Cell-
Nex was significantly more powerful than what is typical in Cloud-Edge deployments. To better
reflect realistic conditions, we limited the number of available CPU cores and reduced their clock
frequency. This produced a new dataset with different latency dynamics and resource constraints,
requiring models to be retrained and adapted to this lower-capacity environment.

4.2.3 Data Preprocessing

The first objective of preprocessing is to transform these raw logs into clean, consistent time series
that can be used for forecasting and decision making. We begin by harmonizing the input: selecting
a fixed set of relevant metrics, enforcing consistent data types, and standardizing the time axis so
that all records align on a common temporal grid. This step removes noisy or irrelevant fields and
ensures that all experiments operate on the same, well-defined schema.

Next, we integrate the different sources of information. Pipeline-level records are enriched with
node and server telemetry, and then aggregated at the cluster level so that each time step summarizes
the overall load and performance of a given cluster. Missing values are handled systematically, and
the result is a multivariate time series per cluster (e.g., every 30 seconds) that includes both the
latency we want to predict and explanatory signals such as resource utilization and pipeline count,
the features from which can be found in Table 4.

Table 4: Final Input features and target for pipeline latency forecasting with exact naming used.

Feature Description

cluster Processing cluster ID (categorical)
pipelines_status_avg_fps Average frames per second
pipelines_status_avg_pipeline_latency Historical avg. pipeline latency (s)
node_cpu_usage CPU usage of the node (%)
node_mem_usage Memory usage of the node (bytes)
pipelines_server_cpu_usage Pipeline server CPU usage (%)
pipelines_server_mem_usage Pipeline server memory usage (bytes)
number_pipelines Number of active pipelines

Target Description

pipelines_status_realtime_pipeline_latency Real time latency of the pipelines being processed (seconds)

Data preparation For learning, these cluster-level time series are converted into supervised datasets.
We split the data chronologically into training, validation and test segments to mimic a real deploy-
ment where models are trained on past behavior and evaluated on future unseen periods. On top of
the mentioned features in Table 4, we construct sliding windows of recent history and corresponding

Page 18 of 50

HORIZON - 101092646 CloudSkin
29/12/2025 RIA

prediction horizons, normalize continuous features, and encode categorical variables (such as cluster
identity), time features are also extracted based on the granularity of time-of-day so that both deep
and classical models can be trained reliably.

In production and offline validation, the same pipeline is applied to short recent windows instead
of the full history. Only windows that contain enough data, and no unresolved missing values, are
kept, ensuring that the models always receive a meaningful and well-conditioned context for fore-
casting. Overall, this preprocessing and preparation stage turns heterogeneous raw logs into struc-
tured, standardized inputs that capture the key dynamics of the system while respecting temporal
causality.

Data Preparation for FlowState FlowState uses the preprocessed time series, but requires addi-
tional considerations due to its long-term modeling of seasonal patterns. The input time series spans
from 9am to 5pm, resulting in 960 time steps per day (8 hours x 60 minutes x 2 samples per minute).
Time intervals outside of this range (5pm-9am) contain missing values, which are filled with NaNs.
FlowState interprets these NaNs as missing data, ensuring that the slightly irregular time axis does
not affect model inference. The length of the input windows and the seasonal structure are config-
ured accordingly to capture daily patterns.

4.2.4 Model Training

We pursue two complementary modelling directions in this work. From a time-series forecasting
perspective, we treat latency as a univariate or multivariate sequence and model its temporal dynam-
ics explicitly. From a regression perspective, we focus on learning a direct mapping from aggregated
telemetry and time features to future latency.

Time-Series Forecasting Perspective In the time-series view, we consider a family of neural se-
quence models for multivariate forecasting, including transformer-based architectures, frequency-
domain models and lightweight linear variants as detailed in 3.2. Training relies on mini-batch gra-
dient descent with an adaptive optimizer and early stopping on a held-out validation set. The stan-
dard mean squared error loss (MSE) is used as a main loss function, however, we have also explored
custom loss functions such as an SLA-aware loss, seen in Equation 6, which increases the penalty for
underestimating high-latency events and down weights small errors in low-latency regimes, encour-
aging the models to focus on accurately predicting potential SLA violations.

1 N
Lsia = N Y- wie (yi — 9:)? (6)
i-1

30 if y; > 200ms and §); < 150

w; = 15 %f v > 200ms @)
3 ify; < 100ms

1 otherwise

We use as input recent windows of cluster-level telemetry and produce short-term forecasts of
pipeline latency over a few minutes horizon, using the same input-output format, normalization
scheme and temporal splits to ensure a fair comparison. From a functional point of view, models
learn a mapping

fo: R — RH,

that maps a window of T past multivariate observations X;_741.+ € RT*4 to a horizon-H forecast
of future latency values ¥;,1..+y € R. We instantiate this framework with several model families,
each grounded in a different theoretical view of temporal dependence.

All models were trained using a full node of the Accelerated Partition of the Marenostrum 5 [20],
the latest supercomputer from the Barcelona Supercomputing Center, using identical data splits and
optimization settings.

Page 19 of 50

HORIZON - 101092646 CloudSkin
29/12/2025 RIA

Regression Perspective with Time Features In the regression view, we compress recent history
into feature vectors and predict future latency directly, without explicitly modelling the full temporal
trajectory. For each prediction time t we build a feature vector z; € R” aggregating recent telemetry
(e.g., mean CPU and memory usage, number of pipelines) and time-related attributes (e.g., hour of
day, quarter of the hour, cluster identity), and learn a mapping

g9 RV = R, Ure1 = So(24),

whose output §;1 is then replicated over the short forecast horizon used by the decision logic.

As a baseline, we use a fixed-coefficient linear regression model that operates on a small set of
intuitive cluster-level features (average node CPU and memory, number of pipelines, and a CPU
interaction term between node and server CPU usage), defining separate coefficients for edge and
cloud clusters. To capture more complex, non-linear dependencies, we also employ a Random Forest
regressor using the same type of summary statistics and time features; both detailed in 3.3. Random
Forest outputs a single latency prediction for the next interval, which we replicate over the short fore-
cast horizon used by the decision logic. Empirically, this Random Forest has been the strongest per-
former among the regression-based models, substantially improving upon the linear baseline while
preserving moderate complexity and offering insights into feature importance. It thus represents our
main regression-oriented benchmark and a practical alternative to full sequence modelling.

4.2.5 Model Evaluation and Comparison

FlowState Results As mentioned in Section 4.2.2, we use FlowState to predict the realtime latency,
represented as the feature pipelines_status_realtime_pipeline_latency. To do so, we provide the historic
pipeline latency time series to FlowState and use it to make predictions of the future latency within a
particular target window. We found that FlowState works best for this scenario when using all data
available. Thus we provided all available datapoints for each channel separately, without considering
the specific train/validation/test split. There are about 33.6k steps for an individual channel and
FlowState would support up to 82k steps in this setting, thus we can provide the entire context and
enable FlowState to “learn in-context” and find useful patterns for prediction.

Starting from the second day, to ensure some minimum context for the predictions, FlowState
then produces forecasts from each consecutive context step. Since FlowState has been optimized for
predictions of size > the size of the seasonality, we configured FlowState to produce forecasts of 960
steps, which is equivalent to 1 day. Therefore, FlowState produces about 32.6k forecasts, each for a
full day. We compared the performance of FlowState in this setting to a running median baseline,
which produces a constant prediction for the given target window, that is computed based on the
median of the last n context steps. We found that n in the range between 1 and 100 works best. The
result comparison can be found in Figure 9. One can see that the predictions of FlowState match the
ground-truth target much better in the long target scenario.

A 05— Target ~—— FlowState =~ —— Median/ Last Step Baseline

0.20 4 —— Target ——— FlowState = Median / Last Step Baseline
04] ’J“‘ !I* P |
v % 0.15 |
3 0.3 1 3
= =
2 | 2 i
5 02 5 o010
0.14 0.05
T T T T T T T T T T T T
0 200 400 600 800 1000 0 200 400 600 800 1000
Time Step Time Step

Figure 9: Prediction of the pipeline latency for 960 steps. a Prediction for the edge node and b for the
cloud node.

Furthermore, we can also compare the performance for a shorter target window of 20 steps. The
results can be found in Figure 10. We can observe that the data in this short forecasting horizon

Page 20 of 50

HORIZON - 101092646 CloudSkin
29/12/2025 RIA

becomes quite unpredictable and thus also the quality of the forecasts of the baseline and of FlowState
degrades. As mentioned above, this is a general trend that we observe for this dataset, the shorter
the prediction window is, the less information the predictions carry.

0.12 4 — Target FlowState =~ —— Median/ Last Step Baseline b oosd— Target FlowState =~ —— Median / Last Step Baseline
0.10 4 -
o o 0.07
S 0.0 \ & 0.06
2 I3
3 5
s i
s /\/\ J\ A /] \
0.04 1 \/ \ | AN
0.04 \/\/
T 0.03 - T T T T
0.0 2.5 5.0 7.5 10 0 12 5 15 0 17.5 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Time Step Time Step

Figure 10: Prediction of the pipeline latency for 960 steps. a Prediction for the edge node and b for
the cloud node.

Time Series Model Results We also tried other models we have trained, all models are evaluated
on the held-out test set using the standard forecasting metrics: mean squared error (MSE), mean
absolute error (MAE). Since the application requires an accurate prediction of latency spikes, and
many of the points do not contain a lot of variation, we focus on MAE as the most representative
indicator of both stability and short-term deviation. Table 5 summarizes the performance of the
different architectures and sequence-length configurations explored.

Model Configuration MSE MAE

FEDformer (sl=60, 11=60, pl=20, dm=32) 0.00261 0.03349
Autoformer (s1=60, 11=60, pl=20, dm=32) 0.00453 0.04664
Informer (s1=120, 11=120, pl=20, dm=256) 0.00366 0.03942
Informer (s1=60, 11=60, pl=20, dm=256) 0.00394 0.03709
TimesNet (s1=60, 11=60, pl=20, dm=64) 0.00289 0.03325
TimesNet (s1=120, 11=120, pl=20, dm=64) 0.00279 0.03176

Table 5: Comparison of time-series forecasting models on the test set. Best models shown after hy-
perparameter tuning.

To ensure a fair comparison, each model was trained using a controlled hyperparameter search.
We systematically varied key temporal parameters such as:

¢ Sequence length (s1): 60 to 2880 time steps. Going from a few (30 minutes) to a large context
(24 hours).

* Label length (11): 60 to 2880 time steps.

¢ Prediction horizon (pl): fixed to 20 time steps. We focus on predicting the 5 min range of
latency from the future 5-10 minutes.

* Model dimensionality (dm): 32, 64, 256 depending on architecture.
¢ Encoder/decoder depth: commonly 2/1 or 3/1.
¢ Feed-forward expansion (d_ff): 128 or 512.

These hyperparameters correspond to the internal settings used in our training scripts (e.g.,
seq_len, label_len, d_model, d_ff, and architectural depth values). All runs share the same op-
timizer (Adam, learning rate 0.001), batch size (32), patience (2), and 20 epochs.

Page 21 of 50

HORIZON - 101092646 CloudSkin
29/12/2025 RIA

Time Series Forecasting Result Interpretation Overall, the models show only modest differences
in performance. TimesNet obtains the lowest errors in our experiments, followed by FEDformer and
the two Informer variants, while Autoformer consistently performs the worst. However, all models
face the same main limitation: they struggle to capture the sudden, short-term fluctuations in our
latency data. These fast changes, often caused by unpredictable workload spikes or system noise,
make accurate short-term forecasting very difficult, regardless of sequence length or model size. For
this reason, even though the experiments allow us to compare the different architectures, none of
the models provides predictions that are reliable enough for short-horizon decision making in our
environment. The results reflect the challenging nature of the problem more than the quality of the
models themselves, and they suggest that additional or alternative techniques may be needed to
handle such highly variable QoS signals. An example forecast obtained with the best-performing
time-series model (TimesNet) is shown in Figure 11.

0.40

— Target TimesNet —— Constant Baseline

0.35

0.30

e

0.00

o
¥]
tt]

Latency [s]
°
S
=1

°
=
7]

25 5.0 7.5 10.0 125 15.0 175 20.0
Time Step

Figure 11: Example short-horizon latency forecast on the test set using the best-performing time-
series model (TimesNet).

Regression Model Results As an alternative to sequence models, we evaluate regression approaches
that predict future latency directly from aggregated telemetry and time features. All models are
trained and tested on the same feature—target pairs, and evaluated using mean squared error (MSE)
and mean absolute error (MAE) on the held-out test set. Table 6 summarizes the performance of the
linear baseline and three non-linear tree-based regressors.

Model MSE MAE
Linear Regression (baseline, averaged edge/cloud) 0.0035 0.0341
Decision Tree Regressor 0.0029 0.0266
Random Forest Regressor 0.0028 0.0266
Gradient Boosting Regressor 0.0028 0.0272

Table 6: Comparison of regression models on the test set using aggregated telemetry and time fea-
tures.

Regression Result Interpretation The linear regression baseline, built on a small set of engineered
features, significantly reduces error compared to naive predictions but remains limited by its global
linear form. Tree-based methods that model non-linear interactions between telemetry and time fea-
tures achieve consistently lower errors, with the Random Forest regressor providing the best overall
performance in terms of both MSE and MAE. An example short-horizon forecast using the Random
Forest model is shown in Figure 12. These results indicate that, in our setting, relatively simple
regression models with well-chosen features can match or outperform more complex sequence mod-
els for short-horizon latency prediction, while remaining computationally efficient and interpretable

Page 22 of 50

HORIZON - 101092646 CloudSkin
29/12/2025 RIA

enough for deployment.

—— Target Random Forest ~—— Last Step Baseline

Latency [s]
o
N
S

2 4 6 8 10
Time Step

Figure 12: Example short-horizon latency forecast on the test set using the best-performing regression
model (Random Forest).

4.3 Usecase: Metabolomics
4.3.1 Problem Definition

As discussed in preceding deliverables, the current production-grade METASPACE inference pipeline
leverages AWS ECS to perform image classification in a serverless environment. While this solution
ensures scalability, the METASPACE DevOps team realized soon that it was not fully cost-efficient due
to several contributing factors.

On the one hand, AWS ECS provides no mechanism to specify a cost-based SLO, meaning that
it is not possible to provision instances while explicitly enforcing a pre-defined budget. On the other
hand, the scaling strategy for OffSampleAI instances relies on reactive feedback-control autoscaling,
in which AWS ECS continuously monitors running instances and adjusts their number based on an
observed metric like average CPU utilization. In the current deployment of the 0ffSampleAT service,
a single instance remains active at all times. When the average CPU utilization surpasses 80%, the
auto-scaler triggers the deployment of four additional instances, up to a maximum capacity of nine.
Due to this reactive design, scaling decisions occur only after load increases have already observed.
As a result, the platform experiences substantial instance provisioning delays when serving highly
variable workloads such as those in the Metabolomics use case. This, in turn, leads to unnecessarily
long job completion times and further exacerbates the overall cost inefficiency.

These limitations motivate the first challenge (C1): the need for a more intelligent, cost-driven
solution that can dynamically adjust resource allocation while maintaining high performance.

However, this is not the only challenge. In parallel, for confidential image datasets, an alternative
inference pipeline has been implemented on an on-premises Kubernetes cluster by re-engineering
Lithops Serve with confidential containers using SCONE. Since this cluster is managed directly by
the METASPACE platform, the cost of running inference in the public cloud is no longer a limiting factor.
In this scenario, the challenge shifts from controlling cloud costs to ensuring data privacy (C2). As a
result, a complex Al-driven solution was not required; instead, a simple heuristic proved sufficient.
Specifically, we profiled both the batch processing time and the confidential-container startup latency,
and used these measurements to provision the required number of instances to satisfy a relaxed SLO.
Further implementation details are provided in D5.4.

In this deliverable, we present our approach for automatically extracting workload traces from
the pre-project 0ffSampleAl service, and we show how this workload exhibited high variability that
rendered predictive scaling ineffective. Built upon these insights, we shifted to a simpler and more
robust solution grounded in parametric regression models to estimate the number of executors that
can be provisioned within a predefined budget.

Page 23 of 50

HORIZON - 101092646 CloudSkin
29/12/2025 RIA

4.3.2 Data Collection

Building on D5.2, we briefly summarize the data collection process, avoiding redundancies to focus
on the final resource provisioning approach. The collection process spanned a period of five months,
from January 1, 2024, to May 31, 2024, containing a total number of 9, 298 jobs and +-35 million image
requests.

In a nutshell, the training data was collected by interfacing with the METASPACE platform daemons,
combining multiple sources. In particular, we instrumented the daemon managing the 0ffSampleAI
service. This daemon receives notifications from the prior stage of the METASPACE annotation pipeline
and handles off-sample classification jobs. Each job contains a variable number of . pngimages, which
are submitted to the AWS ECS service for classification.

The 0ffSampleAI daemon processes up to four datasets concurrently, with one dataset per off-
sample thread. Images are grouped into batches of 32 and sent to the ECS HTTP endpoint, with each
thread managing up to eight synchronous batches to avoid overloading the containers.

From this daemon and AWS CloudWatch, we extracted the following set of training files:

* YYYY-MM_datasets: Information from METASPACE regarding dataset ID, image resolution (x,
y), number of annotated molecules, number of generated images and public/private status as
shown in Table 7.

ds_id X y | annots | imgs | is_public
small.1k 132 | 148 | 1890 | 7369 False
medium.3k | 157 | 147 | 2582 | 5806 True

Table 7: Dataset general information.

* YYYY-MM _dataset_start finish: includes the date and time when a notification is sent from the

Lithops daemon to the update daemon, indicating the start of dataset processing as reported in
Table 8.

ds_id start finish
small.1k 2023-03-01 01:29:15.221671 | 2023-03-01 01:32:28.484376
medium.3k | 2023-03-01 01:50:29.554324 | 2023-03-01 01:53:07.631446

Table 8: Start and finish times for the datasets.

* YYYY-MM_daemons:These files are generated by the 0ffSampleAI daemon, internally called
‘update-dameon’, and contain information about the actual start and end times of classification
jobs. An example of the file format is shown below:

2024-01-01 16:18:55,904 - INFO - update-daemon[Thread-1] - queue.py:532 - [v] Sent {"ds_id": "2023-12-20
_03h38m48s", "action": "classify_off_sample", "stage": "STARTED"} to sm_dataset_status

3| 2024-01-01 16:43:07,530 - INFO - update-daemon[Thread-1] - queue.py:532 - [v] Sent {"ds_id": "2023-12-20
_03h38m48s", "action": "classify_off_sample", "stage": "FINISHED"} to sm_dataset_status

* YYYY-MM._cloudwatch_logs: These files are a number of logging files from AWS CloudWatch.
These files include log information from the AWS ECS containers. It includes info on the dataset
ID, the batch ID, container ID (@logStream), number of images (default 32), and execution times
and metrics. See Table 9 as an example.

Page 24 of 50

HORIZON - 101092646 CloudSkin
29/12/2025 RIA

@timestamp| @message @logStream
2024-05-21 | 2024-05-21 13:24:28,598 - off-sample - INFO - Perf: | ecs/58c95beb
13:24:28.599 | {"ds_id": ’small.8k’, 'batch_id": '0AFE4699’, 'n_images”:
32, ‘start_ts’: 1716297848.116, 'deserialization_time”: 0.009,
‘save_images_time”: 0.062, ‘predict: 20.41, 'metrics”:
[{1716297848.494: {'cpu”: [37.8, 33.3], ‘'memory” 20.8,
‘inf_rss_mb’: 224.62890625}}, ...], "end_ts": 1716297868.599}

Table 9: Log entry details.

The above files were subsequently processed and consolidated to support further analysis and to
provide structured input for model training. More concretely, we generated three types of data files:
datasets, batches, and metrics. The fields contained in each file, along with their descriptions, are listed
in Tables 10, 11, and 12, respectively.

Field Description Example

ds_id Unique identifier of the dataset medium.8k

ds_name Name of the dataset 2023-skin-cancer

message_sent Time at which the classification message | 2024-01-02 10:15:20.443575
is sent to the 0ffSampleAl service

started Time of start of dataset processing 2024-01-01 16:18:55,904

finished Time of end of dataset processing 2024-01-01 16:43:07,530

Table 10: Dataset information.

Field Description Example

ds_id Unique identifier of the dataset to which | medium.8k
the batch belongs

batch_id Unique identifier of the batch 9356b57d2db1

n_images Number of images of the batch 32

container_id Identifier of the container processing the | ecs/a8ec806db
batch

start_ts Start time of batch processing 1709248592.674

deserialization_timeTime taken to transform images from | 0.003
base 32 to PNG

save_images_time | Time taken dumping images to disk 0.004

predict Time taken for inference 11.107

end_ts End time of batch processing 1709248603.788

Table 11: Batch information.

The consolidated dataset serves two primary objectives:

e Comparison of implementations: to evaluate latency, speedup, cost, and performance-per-
dollar between the previous and current system implementations.

* Workload forecasting: to train an Al model capable of anticipating activity spikes, dynamically
adjusting the function pool, mitigating cold starts, and pre-allocating on-premises resources,
including containers.

Page 25 of 50

ecs/58c95beb

HORIZON - 101092646 CloudSkin

29/12/2025 RIA
Field Description Example
batch_id Unique identifier of the batch to which | 9356b57d2db1
the metric belongs
timestamp Local timestamp of the metric 1704189381.019
cpu[l..X] List of usage percentage of each CPU [51.5, 50.0]
memory Percentage of memory used 21.5
inf_rss_mb Memory RSS used 562.265625

Table 12: Metric information.

4.3.3 Model Training

After a detailed analysis of the training files using several established time-series forecasting models,
including LSTM, GRU, and Prophet, we observed that the 0ffSampleAI workload is unpredictable,
both in terms of job arrival times and the number of requests per job. This extreme unpredictability
results from a combination of heavy-tailed job sizes, variable inter-job arrival times, and extended
idle periods, producing workloads with no recurrent patterns.

The next section demonstrates that even advanced time-series forecasting approaches, such as
FlowState built on foundation models, failed to accurately predict the number of requests per time
bin. To this end, we utilized the information contained in the n_images and started fields.

20000

15000

10000 - . L ‘e

Size of Request

Arrival Time

Figure 13: Example of the data showing the size of the requests at each time point.

Data Preprocessing for FlowState Figure 13 shows an example of number of requests per time. As
one can see, the data points are not spread equally over time, but FlowState has been pretrained with
equally-spaced data. Thus, we first have to preprocess the data.

Since our goal was to predict the number of incoming requests over a certain period with a time
series foundation model, the pairs of (n_images, started times) needed to be binned, transforming
them into an equally spaced time series with granularity determined by the size of the time bins. For
example employing a bin size of 1 hour the data is transformed into a time series of length ~ 150 - 24.
Figure 14 shows an example of the binned data.

Since in most hours no requests have arrived, this time series is relatively sparse, consisting of
mostly zeros. Using larger time bins (for example 12 hours per bin) changes this property, and the
time series becomes less sparse, but on the other hand the entire data is now a single series of length
300, making it harder to evaluate due to the small size.

Forecasting the number of incoming requests with FlowState As a first step, we tried to forecast
the number of incoming request for a certain period of time. To quantify forecasting performance,
we split the resulting time series into context/target pairs of size 512/96 for the hourly and 4 hourly

Page 26 of 50

HORIZON - 101092646 CloudSkin
29/12/2025 RIA

1.049 A B

0.8

0.6

0.4

0.2

Wether request in Bin

T T T T T T T
0 50 100 150 200 250 300 350 400
Time Bin [15 min per bin]

Figure 14: Example of the binned data, where a value of 1 indicates that at least one request was
received during the last 15 minutes.

binned data. For 8/12h bin size, we had to reduce the context length, because there were not enough
time points.

The forecasts were evaluated with the mean squared error (MSE) and mean absolute error (MAE),
averaged over all context/target pairs we could construct from the data. As baselines, we selected 3
very simple forecasting approaches: a zero predictor, a mean predictor and a median predictor. These
three baselines receive the same context as FlowState, but all three predict a constant value for the
entire target sequence. The zero predictor constantly predicts zero, the mean predictor constantly
predicts the mean of the context, and the median predictor the median of the context.

Overall, we found that the data is very difficult to predict. Visually looking at the data there does
not seem to be consistently reoccurring patterns and most of it looks unpredictable. Our forecasting
results also support this assessment, given at best small improvements over very simple baseline
forecasting strategies.

If we use small time bins, 1h or smaller the data becomes very sparse such that always predicting
zero becomes the best strategy. For larger bins, FlowStates performance becomes better, but still, we
cannot consistently beat the mean/median predictors. The following table summarizes the results of
FlowState vs the three baselines for varying time in sizes.

Table 13: Initial Results: MSE / MAE for FlowState and Baselines at Different Bin Sizes

Bin Size FlowState Zero-Predictor | Mean-Predictor | Median-Predictor
1 hour 322 / 18.5M 311 / 19.7M 440 / 16.9M 312 / 19.7M

4 hours | 1181 / 159M 1240 / 193M 1506 / 146M 1189 / 170M

8 hours 2418 / 470M 2521 / 612M 2771 / 446M 2308 / 477M

12 hours | 3736 / 1040M | 4459 / 1471M 4199 / 946M 3770 / 1040M

Forecasting the presence of an incoming requests with FlowState A second attempt at forecasting
consisted of ignoring the number of requests per dataset, and instead forecast whether or not there
will be a new job arriving within the time frame of 15 minutes. This time frame corresponds to the
timeout limit of the serverless functions (AWS Lambda).

Predicting whether an event happens within a certain time frame is not directly how FlowState
was pretrained. Nevertheless, there are ways in which we can apply FlowState to perform this task.
The approach we tried was to bin the data in time steps of 15 minutes, and transforming the series
to be “1” if there was a job arrival in the corresponding bin and else ‘0. The task then translates to
forecasting only 1 time step.

Page 27 of 50

CloudSkin
RIA

HORIZON - 101092646
29/12/2025

To assess how accurate the predictions were we used the MAE, which resembles the loss function
FlowState was trained on, but we also calculated the accuracy by interpreting all forecasts >= 0.5
as True and < 0.5 as False and then calculating the accuracy (how many percentages of 15 min.
intervals we guessed correctly. Overall, in the data there were ~ 25% of bins in which a job arrived.
Therefore, always guessing no job” would result in accuracy 75%. Since multiple jobs sometimes
occur in close temporal proximity, another reasonable baseline is to predict that there will be a job in
the next time bin, if there was one in the current bin. Expanding the baseline to include more context
and forecast incoming jobs, if it was the case for a majority of previous 15 min. time windows in the
context only decreased baseline performance. The result of the strongest baseline is 81.2% accuracy
and FlowStates accuracy using all of the available context is 81.6%. You can find the confusion matrix,
accuracy, precision, recall and F1 scores summarized in the table below.

Table 14: Confusion matrix and metrics for FlowState vs Baseline.

Actual FlowState Baseline
Pred. Positive | Pred. Negative | Pred. Positive | Pred. Negative

Positive 941 1082 1261 762
Negative 409 5664 762 5311
Accuracy 81.6% 81.2%
Precision 69.7% 62.3%

Recall 46.5% 62.3%
F1 Score 27.9% 31.2%

Overall, the results stay the same: the workload appears chaotic, with few discernible patterns,
and performance improvement over simple baselines are minimal. As shown in the confusion matrix,
FlowState struggles most with false negatives. Lowering the prediction threshold can help balance
this trade-off. In the following table, a threshold of 0.3 yields more balanced predictions, though with
a slight reduction in overall accuracy.

Table 15: Confusion matrix and metrics for FlowState with threshold 0.3

Predicted Positive | Predicted Negative
Actual Positive 1249 774
Actual Negative 766 5307
Accuracy 80.98%
Precision 61.99%
Recall 61.74%
F1 Score 30.93%
MAE 0.209

4.3.4 Model Comparison and Evaluation

Given the inherent unpredictability of the workload, we reformulated the initial strategy. As outlined
above, our goal was to design an online heuristic capable of determining the appropriate number of
serverless executors for a classification job in order to maximize performance while respecting budget
constraints. To achieve this, we developed an estimator of the total aggregated latency, enabling us
to approximate the associated cost and ensure that the cost SLO is not violated at any time.

More formally, let T (w, r) denote the total aggregated latency incurred by the w executors in order
to process the r inference requests in the job. Thatis, T(w,r) = Y"1 T;(r;), where T;(r;) is the latency
contributed by executor 7 in processing r; requests. Note that)’ ; r; = r. Fortunately, we found that
T(w,r) can be accurately approximated via regression using a small number of samples, and that

Page 28 of 50

HORIZON - 101092646 CloudSkin

29/12/2025 RIA
4000 ‘ ‘ ‘ 3 600
— ® Samples °
i”;sooo - ——Regression (2 := 0.9913) : , 007 . . .
+— [i L ' o °
5 g omef g l I —
4 I | ° (]
E 1000 -200 | - 1
[]
0 : : ‘ -400 ‘ ‘ ‘
0 200 400 600 0 200 400 600 800
No. of workers (w) No. of workers (w)
(a) Init time (Tt (w))- (b) Residual plot of Init time.
10
—~ 97 | e Samples
& 8 |— 2
% 21 Regression (r° := 0.9975) %
-+ 6 L []
S 5r '(3 ° ° o H :
£ 4 3 ' B A
= 3¢ o ! i ° [J
g 2 o :
—_— [) []
1 °
0 L

2 3 4 5 6 7 200 400 600 800

0 1
log(No. of workers) No. of workers (w)
(c) Log-log Init time. (d) Residual plot of Log-log Init time.

Figure 15: Linear regression for the Init phase using the classification CNN model [22] used by the
0ffSampleAl service.

this approximation can subsequently be used to estimate the cost per request (CPR). We describe this
regression approach in what follows.

Estimation of aggregated latency. To approximate T(w, r) accurately, we needed to account for the
two components of the total aggregated latency in Function-as-a-Service (FaaS) platforms: (a) the Init
phase and (b) the Invoke phase [21]. In what follows, we describe the online parametric regression
process used to estimate both phases for AWS Lambda.

Init phase. The Init phase creates the execution environment for our executors by downloading the
function code and dependencies and starting the chosen runtime. This phase takes place only during
a “cold start”. Importantly, the aggregated Init latency depends solely on the number of workers and
not on the number of requests. After analysis, we found that the aggregated Init latency, Tinit(w), can
be accurately approximated with univariate linear regression:

TInit(w) = bo + blw + ¢, (8)

where by, by € R are learned parameters minimizing the residual sum of squares (RSS). Figure 15a
shows the fitted linear model for the classification CNN model [22] used by the 0f fSampleAI service.
Despite a high coefficient of determination (? := 0.9913), the residuals (¢) display increasing variance
with larger w, as seen in Figure 15b, indicating heteroscedasticity. To overcome this, we applied a log-
log transformation:

log Tinit(w) = by + by logw + e.)

This transformation improved both prediction accuracy (r* := 0.9975) and residual behavior, as
shown in Figure 15c and Figure 15d.

Page 29 of 50

HORIZON - 101092646 CloudSkin

29/12/2025 RIA
= Regression (% = 0.9858)
8 ® Samples
o 10
®75
Q (o)
g 2.5
£ 0
8 10
1.25 0 o 25
log w log r

Figure 16: Log-log transformation of the Invoke latency (Eqn (11)) using ResNet50.

Invoke phase. The Invoke phase executes the function code after initialization completes, which
includes the code of the Lithops Serve executors. The executors perform three operations: fetching
batches of images from object storage, preprocessing them, and storing batch inference results back
to object storage. Once the final batch is processed, the executors terminate. The Invoke latency thus
encompasses the time from when the serverless executor starts until the completion of the last batch.
The cumulative Invoke latency, Tinyoke (W, 7), can also be well approximated by linear regression:

Tinvoke (W, 1) = ag + ayw + axr + ¢, (10)

with parameters ag,a1,a, € R. The dependency on executor count emerges because executors
start asynchronously, creating workload imbalance. Similar to initialization latency, heteroscedastic-
ity is present; we corrected it via log-log transformation:

log Tinvoke (W,) = ag + a1 logw + axlogr + ¢. (11)

Fig. 16 shows the improved fit after transformation.

Combining phases. By combining Eqns. (8) and (10), the total latency T(w, r) can be approximated
as:

T(w’ r) ~ elog TInit(w) + elog TInvoke(w/r)

~A-wh+B-wh, (12)

where A = e% and B = % - 2,

Cost estimation. From Eqn. (12), the total cost of an inference job is given by
C(w,r) = T(w,r) - p(m),

where p(m) denotes the price of a Lambda instance with memory size m ($/GB-s). We recall that
AWS Lambda bills execution time based on the amount of memory allocated to the function and the
total duration of its execution. When a function is invoked, AWS charges for every millisecond of
runtime from the moment the code starts executing until it returns or terminates, rounded up to the
nearest millisecond. The cost per millisecond increases with the configured memory size, as higher
memory allocations automatically provide proportionally more CPU, network, and I/O resources.
Consequently, selecting the appropriate memory configuration is a key performance-cost trade-off:
allocating more memory can significantly reduce execution time, but at a higher per-millisecond rate,
while lower memory settings reduce the rate but may lead to slower execution and increased overall
cost. This trade-off is precisely what the new implementation of the 0OffSampleAlI service leverages
to achieve higher efficiency and better cost—performance balance.

Page 30 of 50

HORIZON - 101092646 CloudSkin
29/12/2025 RIA

Finally, we computed the empirical cost per request as:

CPR(w,7) ~ C“:’ N p(:” : (A -wh +B- wﬂl) . (13)

The estimated cost per request derived in Eqn. (13) is used as the primary decision metric in the
Lithops Serve auto-scaler. For any incoming batch job of size r, the auto-scaler evaluates CPR(w,)
across the feasible range of w and selects the smallest number of executors that satisfies the target CPR
SLO. This ensures that Lithops Serve provisions executors dynamically while guaranteeing that no
configuration exceeds the allowed CPR. As detailed in D5.4, this Al-driven scaling strategy allows
OffSampleAl to balance performance and budget constraints efficiently, replacing “purely” reactive
heuristics with a principled, cost-aware approach.

We observe that although Eqn (13) is a sum of power functions in w with no general closed-
form solution, the optimal number of workers can be efficiently found using binary search. The time
complexity is O (log min (Wmax, [7/b])), very small since Wax is limited to a thousand concurrent
Lambda executions.

4.4 Usecase: Surgery
44.1 Problem Definition

The National Center for Tumor Diseases (NCT) requires a compute continuum capable of supporting
real-time Al-assisted surgical workflows, where latency and resource efficiency are critical. Endo-
scopic video streams must be processed at high frame rates (e.g., > 30 FPS) for Al models performing
instrument detection, phase recognition, and segmentation. Moreover, endoscopic video data should
be durably stored for downstream analytics while supporting fluctuating workloads related to the
daily activity of surgery rooms. This dual requirement introduces two major challenges:

* Smart Resource Allocation (C1): Surgical Al workloads exhibit highly heterogeneous resource
demands, combining GPU-intensive segmentation models with lighter detection tasks. These
workloads must run concurrently on limited edge hardware without violating strict real-time
guarantees. The challenge lies in efficiently allocating CPU and GPU resources to maximize
utilization while preventing oversubscription and ensuring that latency-sensitive models main-
tain their required frame rates.

¢ Predictive Streaming Auto-Scaling (C2): Video ingestion and storage systems must adapt to
significant workload fluctuations driven by operating room schedules. Scaling the streaming
infrastructure reactively often causes latency spikes during reconfiguration, which can disrupt real-
time video analytics. The challenge is to anticipate workload variations and adjust resources
proactively to maintain stable ingestion performance and avoid Service Level Objective (SLO)
violations during critical surgical procedures. The challenge for the LP is to drive predictive
auto-scaling decisions on Pravega segment store instances by consuming metrics (e.g., write
latency, number of segment stores published via Prometheus), along with other relevant system
metrics (e.g., number of active surgery rooms). Importantly, Pravega segment store instances
can be horizontally scaled through Kubernetes APIs.

4.4.2 Data Collection

C1 - Smart CPU & GPU Allocation For the CPU & GPU bin-packing challenge, telemetry was col-
lected from the Kubernetes-based surgical edge cluster running NCT Al inference pipelines (instru-
ment detection, phase recognition, liver segmentation). GPU metrics - including utilization percent-
age, memory consumption, and power draw - were retrieved via direct nvidia-smi queries executed
within pods. CPU usage per pod was monitored through kubectl top and pod resource request
specifications, while frame rate (FPS) per stream was measured via GStreamer appsink callbacks to
ensure compliance with real-time Service Level Objectives (>30 FPS). GPU allocation was controlled
through custom per-GPU resources (nvidia.com/gpu-index) with time-slicing configurations (up to

Page 31 of 50

HORIZON - 101092646 CloudSkin
29/12/2025 RIA

Occupancy of Surgery Rooms at NCT
T T T T

End-to-end latency of GStreamer video frames in Pravega (AWS EKS, local drives) 10

g

Surgery Rooms in Use

|——10 writerireader pairs
T

9-
8
7
6
5
4
3
2
1
0

= | |
uu uy u u U u u U
8 1 5, 45 55 @5 75 88 100 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56

25
End-to-end Latency (ms) Time (days)

Figure 17: Data collected for solving the Pravega predictive auto-scaling challenge (C2). On the left,
the performance profiling of Pravega segment stores based on the number of parallel video streams.
On the right, the anonymized surgery room utilization traces collected by NCT.

6 concurrent processes per GPU) and nodeSelector constraints for node targeting. These measure-
ments were sampled at 1-second intervals during bin-packing experiments - using both baseline (one
stream per GPU) and consolidated (first-fit decreasing) strategies - to characterize resource profiles
and validate consolidation under multi-stream workloads.

C2 - Predictive Auto-Scaling of Pravega When considering auto-scaling a streaming system like
Pravega based on workload patterns, there are two sources of data that are required: i) performance
profiling of the system, and ii) workload traces to be used for predictions. Regarding the former, data
was gathered from a full Pravega deployment integrated with GStreamer pipelines and monitored
through Prometheus. Collected metrics included segment store write latency distributions (p50, p90,
Pp99), stream ingestion throughput, and number of active segment store instances. Collectively, this
information help us building a performance profile of the ingestion latency a single segment store
can provide for a number of parallel video streams. This is key for taking auto-scaling decisions
to guarantee a specific write latency SLO (see Fig. 17, left). Moreover, scaling events were tracked
alongside tail latency spikes during reconfiguration.

On the former data source, we used two months of anonymized NCT operating room utiliza-
tion traces to train and validate the LSTM-based forecasting model (see Fig. 17, right). replayed
at accelerated speed to emulate real-world workload fluctuations. These telemetry streams were
complemented with resource usage data from Kubernetes nodes and Pravega performance counters,
enabling correlation between workload patterns and system elasticity behavior.

4.4.3 Data Preprocessing

C1 - Smart CPU & GPU Allocation The raw telemetry collected during profiling experiments con-
sists of per-stream frame rate (FPS) measurements and CPU usage (mCPU) for each workload type.
Before applying the bin-packing optimization, FPS samples collected at 1-second intervals are aggre-
gated over stable execution windows (excluding warm-up periods) to identify the minimum CPU
allocation that sustains >30 FPS.

Initial profiling measured CPU consumption in millicores (mCPU), but allocating fractional CPU
resources introduced non-linearity when scaling the number of concurrent workloads. To preserve
linear scaling behavior, CPU allocations were rounded to whole cores, enabling predictable resource
consumption as stream counts increase. From this processed telemetry, we derive resource profiles for
each workload type, encoding the minimum whole-core CPU allocation required to meet the frame
rate SLO. Profiling established that Instrument Detection and Phase Detection each require 4 CPU
cores, while Liver Segmentations requires 8 CPU cores due to its higher computational complexity.
The bin-packing solver operates on these profiles alongside cluster capacity constraints: 16 CPU
cores allocatable per GPU (derived from the 64-core node hosting 4 GPUs) and a maximum of 6
time-sliced pods per GPU. This time-slice limit is derived from the most GPU-intensive workload
(Liver Segmentation), which consumes approximately 12-18% GPU utilization per stream; beyond

Page 32 of 50

HORIZON - 101092646 CloudSkin
29/12/2025 RIA

6 concurrent streams, GPU saturation causes frame rate degradation. Workloads are sorted by CPU
demand in descending order (first-fit decreasing) before placement to improve packing efficiency.

C2 - Predictive Auto-Scaling of Pravega The raw input for this use case consists of operating-room
utilization traces collected in the previous section, stored as a univariate time series (nct . csv). Before
training, the data undergoes normalization and chronological splitting to preserve temporal causal-
ity. Specifically, the series is converted to float32 and scaled to the range [0, 1] using a MinMaxScaler
fitted on the training partition. This ensures consistent feature scaling across training/testing phases.

To emulate real deployment conditions, the dataset is divided into two segments: the earliest
12.5% (1 week) of samples for training and the remaining 87.5% (7 weeks) for testing. This chrono-
logical split prevents leakage and reflects the operational scenario where models learn from past
behavior and predict future unseen intervals. The normalized data is then transformed into su-
pervised learning pairs using a sliding-window approach: each input consists of a short historical
context (one time step), and the target is the immediate next value. This design aligns with the goal
of near-term forecasting for proactive scaling decisions. Finally, the input arrays are reshaped into
the format required by sequence models, namely [samples, timesteps, features] = [N, 1, 1],
ensuring compatibility with the LSTM architecture.

4.4.4 Model Training

C1 - Smart GPU Allocation The GPU bin-packing strategy was designed to address heterogeneous
resource demands of NCT Al models (instrument detection, phase recognition, liver segmentation)
under strict real-time constraints. These models exhibit different computational profiles: lightweight
detection tasks are CPU-bound, while segmentation workloads are GPU-intensive and memory-
hungry. A naive one-stream-per-GPU approach leads to severe under-utilization (> 10% GPU us-
age), whereas aggressive time-slicing without constraints degrades frame rates below the 30 FPS
Service Level Objective (SLO).

Baseline Allocation. Let W = {w;, ..., w, } denote a set of workloads and G = {g1,...,gm} aset
of available GPUs. The baseline strategy assigns each workload to a dedicated GPU:

0 otherwise

Xl‘]':{ e J VwZEW,gJEQ (14)

where x;; € {0,1} indicates assignment of workload w; to GPU g;. This approach guarantees isolation
but limits concurrency to |G| streams regardless of actual resource consumption.

First-Fit Decreasing Bin-Packing. To improve utilization, we formulate workload placement as a
bin-packing problem with two capacity constraints per GPU: CPU cores (Cmax = 16) and time-sliced
pods (Tmax = 6). Each workload w; has a CPU requirement ¢; € {4,8} cores (4 for detection/phase, 8
for segmentation). The objective is to minimize the number of GPUs used while respecting capacity
constraints:

min Zyj (15)
j=1

s.t. ZCZ' * Xij < Crax Yi Vg] eg (16)
i=1

inj < Thax Y \V/g] €eg (17)
=1
lm

le']‘ = VYw;, € W (18)
j=1

Xij, Yj € {0,1} (19)

where y; = 1if GPU g; is used. The time-slice limit Tyax = 6 is derived from the GPU utilization of
the most demanding workload (Liver Segmentation ~12-18% per stream); exceeding this threshold
causes GPU saturation and SLO violations.

Page 33 of 50

HORIZON - 101092646 CloudSkin

29/12/2025 RIA
6 ‘ LSTM (Closed ‘Loop) i 6 ‘ LSTV\I/I (Open IToop)
5h 5h
4 44
3 3
1 1
1110 i 1 A R
g IWH LT IO e ”IHI”I\I IHIII IIIM U101
=2 1 <7 1
3 L o 3 3832 =H
4f ® o 4t e
5+ D-a 4 2 To 2 |4 6 S5t O.a 4 2 0 2 4 &
& | | | | IErrcr 5 | | | | _ Ermor |
0 7 14 21 28 35 42 49 0 i 14 21 28 35 42 49
Time (days) Time (days)

Figure 18: Mean squared error for LSTM predictions in open and closed loop modes.

Rather than solving the integer program exactly, we employ the first-fit decreasing (FFD) heuristic:
workloads are sorted by CPU demand in descending order, then each workload is assigned to the first
GPU with sufficient remaining capacity. While being efficient, FFD provides near-optimal solutions
[23], making it suitable for real-time scheduling decisions.

Training for this component did not involve a predictive model but rather profiling-based char-
acterization. We collected telemetry on GPU utilization, memory footprint, and FPS under varying
CPU allocations to build resource profiles for each model. These profiles were then encoded into
the bin-packing policy, which was validated through controlled experiments comparing baseline de-
ployments against optimized packing strategies. GPU metrics were collected via direct nvidia-smi
queries, while FPS stability and pod scheduling behavior were monitored through GStreamer call-
backs and Kubernetes events.

C2 - Predictive Auto-Scaling of Pravega To reduce tail-latency spikes during reconfiguration and
avoid oscillations typical of reactive scaling, the LP employs a lightweight Long Short-Term Memory
(LSTM) forecaster that anticipates short-term changes in workload intensity derived from operating-
room (OR) utilization traces. The forecast is converted into a recommended number of Pravega
Segment Stores via the performance profile (streams per instance vs. write latency) and applied
proactively through Kubernetes APIs. This places the LSTM at the “sense—predict-act” center of the
LP pipeline: ingest recent telemetry, predict near-term load, and trigger scale-out before the surge.

LSTM has been chosen for its ability to capture temporal dependencies and mitigate vanishing
gradients in sequential data. The model architecture follows a simple yet effective design: an input
layer feeding into a single LSTM layer with four memory units, followed by a dense output layer pro-
ducing one-step-ahead predictions. This small configuration is deliberate, as it balances predictive
capability with low computational overhead, making it suitable for real-time inference in the LP.

Training is performed using the Adam optimizer with a mean squared error (MSE) loss function,
reflecting the regression nature of the task. The model is trained for 100 epochs with a batch size
of 1, iterating over the chronological training slice. After training, predictions are generated for both
training and test sets, and evaluation metrics such as Root Mean Squared Error (RMSE) are computed
in normalized and original scales (via inverse transformation) to assess accuracy. The trained model
is exported as a portable artifact (nct_lstm_model.keras) for integration into the Learning Plane
inference pipeline.

At inference time, the model supports two rollout modes (see Fig. 18): open loop, where actual next
values are fed back at each step, and closed loop, where the model’s own predictions are recursively
used as input. The latter enables multi-step forecasting by chaining one-step predictions, which
is critical for anticipating workload surges and issuing proactive scaling actions. These forecasts
are then mapped to the required number of Pravega segment stores using the performance profile
established earlier, ensuring latency Service Level Objectives (SLOs) are maintained during dynamic

Page 34 of 50

HORIZON - 101092646 CloudSkin
29/12/2025 RIA

workload conditions.
44.5 Model Comparison and Evaluation

C1 - Smart CPU & GPU Allocation To evaluate the bin-packing strategy, we compare single-GPU
and multi-GPU deployments for Liver Segmentation, the most resource-intensive workload. We fo-
cus on three metrics: GPU utilization, workload density (concurrent streams), and FPS stability (compli-
ance with the >30 FPS SLO). Comprehensive results for Instrument Detection and Phase Detection
are reported in Deliverable D5.4.

Figure 19 presents scaling behavior when consolidating multiple Liver Segmentation streams
onto a single GPU via time-slicing. FPS scales non-linearly and remains at 30+5 FPS up to 6 concurrent
streams, as does GPU utilization: utilization increases from ~18% (1 stream) to~=75% (6 streams), but
the per-stream overhead grows disproportionately at higher densities due to time-slicing contention
and context-switching costs. Beyond 6 streams, frame rate degradation occurs as the GPU becomes
saturated, establishing the practical consolidation limit for heavyweight workloads on a single de-
vice.

FPS vs Streams - Binpacking - Liver Segmentation - 8CPU per Pod

- Framerate GPU Utilization

—8— Avg FPS per stream
45 70

40

35 60
30
50
=

20 40

FPS
N
I

15
10

1 2 3 4 5 3 4 5
GPU Memory Utilization GPU Memory Used
14 3500

o
-
N}
o

12 3000

10 2500

2000

©
MB

6 1500

4 1000

-
~

3 4 5 3 4 5
GPU Power Pod CPU

o
-
N
o

5100
200
5000

180 4900

4800

Watts
mCPU

160 4700

4600
140
4500

4400

1 2 3 4 5 3 4 5
Number of streams Number of streams

o
-
N
o

Figure 19: Single-GPU bin-packing scalability for Liver Segmentation: FPS declines gradually when
increasing to 6 streams, while GPU utilization also grows non-linearly due to time-slicing overhead.

To overcome this single-GPU bottleneck, Figure 20 demonstrates multi-GPU distribution where
streams are spread across available devices using the first-fit decreasing algorithm. In this config-
uration, scaling behavior linearizes: GPU utilization remains at ~15% for 14 streams (each placed
on separate GPUs), then increases to ~30% after 4 streams as consolidation begins. Crucially, FPS
remains stable at 30-32 FPS across all configurations, and resource consumption (memory, power,

Page 35 of 50

HORIZON - 101092646 CloudSkin
29/12/2025 RIA

CPU) scales proportionally with stream count. This confirms that the non-linear overhead observed
in the single-GPU case stems from excessive time-slice contention rather than fundamental GPU ca-
pacity limits. By distributing workloads across multiple GPUs before consolidating, the bin-packing
strategy avoids premature saturation while still achieving improved utilization over baseline alloca-
tion. This informs one of our bin-packing constraints for each GPU: CPU cores (Cax = 16).

FPS vs Streams - Binpacking - Liver Segmentation - 8CPU per Pod - Multi-GPU

Framerate GPU Utilization

—8— Avg FPS per stream 30
28

35 26

{

24

PS
N
o
%

T2

20

-
~

3 4 5 6 3 4 5 6
GPU Memory Utilization GPU Memory Used

~
-
~
~

4.25
1000
4.00
3.75
900
3.50

MB

325 800

3.00
700
2.75

2:50 600

3 4 5 6
GPU Power Pod CPU
150 5000

-
~
~
-
~
wA
o
o
~

4800

4600

mCPU

4400

125 4200

4000

-
~

3 4 5 6 3 4 5 6
Number of streams Number of streams

~
-
~
~

Figure 20: Multi-GPU bin-packing scalability for Liver Segmentation: distributing streams across
GPUs linearizes scaling behavior, maintaining stable 30-32 FPS with proportional resource consump-
tion.

These results validate the bin-packing strategy’s two-phase approach: (1) distribute workloads
across GPUs to avoid single-device contention, then (2) consolidate within the 6-stream time-slice
limit per GPU. This achieves up to 7x higher workload density compared to baseline (1 stream per
GPU) for Liver Segmentation, with even greater gains for lighter workloads (see Deliverable D5.4).

C2 - Predictive Auto-Scaling of Pravega The evaluation of predictive auto-scaling focused on com-
paring reactive scaling strategies against the LSTM-based predictive approach for Pravega segment
store elasticity under fluctuating workloads derived from NCT operating room traces.

In this section, we summarize the results we obtained from comparing the following auto-scaling
strategies for Pravega:

* Reactive Approach: This method embodies the most common approach to auto-scale distributed
systems. There is a feedback loop that takes performance metrics as input and reacts to the
ongoing workload by scaling up or down the number of service instances. In our case, this
algorithm takes the last m minutes as the “time window” to compute the end-to-end latency

Page 36 of 50

HORIZON - 101092646 CloudSkin
29/12/2025 RIA

Auto-scale instances based on the maximum

w=1h expected workload for the next prediction window
R * K
_—/ Workload
< / -
! / — Prediction
i == Predictive
! Autoscaling

Figure 21: Mean squared error for LSTM predictions in open and closed loop modes.

for all the streams in the system. If the current end-to-end latency of video streams is over the
SLO higher bounds (e.g., 22ms at percentile 95), the algorithm scales up the number of Pravega
instances. Similarly, the algorithm may scale down the number of Pravega instances if the
current latency is below the lower SLO bound in the last time window.

* Reactive auto-scaling with memory (simulation only): The most basic version of the reactive al-
gorithm may lead to situations of instability. That is, it may detect that latency is below the
threshold for the current window period and then decide to downscale the number of Pravega
instances. However, it may be the case that fewer Pravega instances may lead to an end-to-end
latency over the higher latency SLO bound. As the algorithm does not have memory, it may be
scaling up and down the number of instances continuously, which is undesirable. To mitigate
this problem, we evaluate a version of the reactive auto-scaling algorithm with memory. This
means that the algorithm will record the number of writer and reader pairs in the system in the
previous scaling event, which is used to prevent downscaling the system if that would lead to
violating the latency SLO again.

* Predictive Approach (LSTM): With these observations in mind, we use a predictive auto-scaling
algorithm as shown in Figure 21. Our predictive algorithm is based on LSTM forecast traces
about the near-term workload. The algorithm works as follows. First, the algorithm is expected
to satisfy a latency SLO goal (e.g., latency at p95 under 20ms). This goal is expected to be always
satisfied, irrespective of the auto-scaling events. Second, it also establishes a time window w.
The size of the time window refers to the period of time in the near future that the algorithm
will consider from the LSTM prediction. Based on that, the algorithm will pick the maximum
expected workload within w. In the NCT trace, the workload may be described as number of
ongoing surgeries using video stream analytics. The algorithm also assumes some modeling or
performance-related information about the latency of a system instance under parallel streams.
Based on such performance information, the algorithm looks for the number of streaming sys-
tem instances that satisfy the required latency SLO assuming the maximum predicted workload
within w. Once the system gets to the next time window, the algorithm runs again. As can be
noticed, the algorithm gives priority to meeting latency requirements to minimizing resource
usage. Moreover, with a sufficiently large prediction time window, the algorithm is expected to
greatly reduce the number of auto-scaling events inducing high tail latency.

Predictive auto-scaling results: Next, we summarize the results of the LSTM predictive approach to
auto-scaling Pravega instances, comparing simulation-based results (see D5.2) and real experiments
(see D5.4). In particular, we draw the following observations:

* Scaling Events: Simulation experiments showed that reactive auto-scaling triggered a very high
number of instance changes, with the vanilla reactive algorithm incurring 1,310 scaling events

Page 37 of 50

HORIZON - 101092646 CloudSkin
29/12/2025 RIA

Max end-to-end latency (p90 SLO) - 1 day

Max end-to-end latency (20ms at p95 SLO) - 1 week (test data) 1.000
T

0.999
*
N

\ 0.998
0.998 - \\ 1
High tal atency values due to 0.997
auto-scaling Pravega instances.
0.996 |- 4 0.996
w

w High tail latency values due
g 0995 auto-scaling Pravega instance:

CD
DI

0.994 0.994

0.993

09921 Reactive autoscaling (vanilla, 5m window) ||
— Reactive autoscaling (memory, 5m window) 0.992

Predictive autoscaling (oracle, 60m window)
— Predictive autoscaling (LSTM, 60m window) 0991 —— Reactive autoscaling
= LSTM Predictive autoscaling

0.99 .
10! 102 10% 0.990
End-to-end latency (ms)

10t 102 10°
End-to-end latency (ms)

Figure 22: Mean squared error for LSTM predictions in open and closed loop modes.

over one week of NCT workload replay. Adding memory reduced this to 44 events, but the pre-
dictive LSTM approach achieved only 12 scaling events, a 3.6 x reduction compared to reactive-
with-memory and more than 100x fewer events than vanilla reactive scaling. Real experiments
confirm this trend: during a full replay of two months of traces at accelerated speed, reactive
scaling produced 112 scaling actions, while predictive scaling reduced this to 16, representing a
7x improvement in stability. Fewer scaling events translate into smoother transitions and lower
latency spikes for Al video inference.

e Tail Latency Impact: In simulation, reactive scaling exhibited severe latency spikes during re-
configuration, with tail latencies reaching > 100ms values at p87 and p99.56 for vanilla and
memory-based reactive methods, respectively. Predictive LSTM reduced these extremes to
p99.89, nearly eliminating disruptive outliers. Real experiments reinforce these findings: pre-
dictive scaling reduced worst-case p90 latency by nearly 6 x compared to reactive scaling, keep-
ing 99.9% of requests under 150ms, whereas reactive approaches showed heavy tails extending
up to 1s. This improvement is critical for latency-sensitive Al video analytics pipelines.

* Methodology Validation: The real-world results closely match the simulation-based predictions,
validating our methodology. Both studies demonstrate that predictive elasticity significantly
reduces oscillatory behavior and tail-latency penalties during scaling events. The consistency
between simulated and empirical outcomes confirms that the LSTM-based approach general-
izes well from controlled experiments to production-like environments.

Overall, these results highlight the relevance of predictive Pravega auto-scaling in enabling elas-
ticity for fluctuating workloads such as those observed at NCT. By anticipating resource needs and
minimizing disruptive scaling actions, the LP ensures stable ingestion and low-latency performance
for real-time Al video analytics. This capability is essential for surgical environments where latency
spikes can compromise decision-making, and it demonstrates how predictive strategies outperform
reactive heuristics in both efficiency and quality of service.

4.5 Usecase: Agriculture
4.5.1 Problem Definition

The practical application of this technology in the agricultural sector faces two main challenges. First,
reliable and sufficient data is needed, which requires overcoming resistance and barriers to data
sharing, such as the need to control data ownership and usage, differences in units of measurement,
and the accessibility of information by external services. Second, for its use to be viable, the ability to
process data at different levels of the computational continuum is required. This includes ensuring
the feasibility of cloud computing for large volumes of data with predictable and optimized costs.
From a machine-learning perspective, and under the premise that the agronomic workflow is
fully specified, we face the problem that execution times vary significantly depending on the con-
figuration and type of resources, as well as the volume, scope, and frequency of the data sources.

Page 38 of 50

HORIZON - 101092646 CloudSkin
29/12/2025 RIA

The main objectives, which at the same time respond to the primary scientific and technolog-
ical challenges, align with the development of an intelligent optimization mechanism capable of
predicting and recommending optimal configurations (memory, CPU, parallelism, parameters) for
serverless workflows, minimizing both execution time and cost.

The optimization challenge requires:

¢ Predicting the duration of each execution based on configurable parameters (allocated mem-
ory, number of vCPUs, number of partitions, etc.).

* Automatically selecting the configuration that minimizes execution time and associated cost.

¢ Integrating this optimization into the CloudSkin/PyRun learning plane through the existing
instrumentation (Profiler, Prometheus).

4.5.2 Data Collection

Multiple data collections have been used both for carrying out the executions and for the analysis
and optimization of the results.

We therefore distinguish between data coming from sensors and geospatial information, on the
one hand, and resource consumption, performance, and processing data, on the other.

The following data collections were employed:

e Agricultural use-case dataset: CloudSkin climatic layers (temperature, humidity, irrigation)
obtained from the various datasets incorporated into the dataspace.

* Digital terrain models (MDTO05) from the IGN (Instituto Geografico Nacional) for the Region of
Murcia, in GeoTIFF format.

* Execution environment metadata from Lithops (via JobRunner /DynamoDB): configuration and
execution identifiers.

* Metrics from the profiler sent to Prometheus/AWS Managed Prometheus: time-series data on
execution time, CPU usage, and memory usage.

* Results from approximately 150 executions of the evapotranspiration pipeline, varying mem-
ory, number of vCPUs, number of data segments, and other parameters.

4.5.3 Technologies and Core Components

The CloudSkin project architecture integrates a set of complementary technologies and core compo-
nents that enable efficient, reliable, and scalable monitoring across both open-source and multi-tenant
execution environments. At a high level, the monitoring stack combines lightweight system intro-
spection, metrics collection and storage, resilient communications, visual analytics, and persistent
metadata storage to support performance analysis, bottleneck detection, and continuous optimiza-
tion.

The main technologies used are the following:

¢ psutil: Provides detailed system metrics (CPU, memory, disk, and network) at process and
thread level, enabling fine-grained resource profiling per execution.

¢ Prometheus / AWS Managed Prometheus: Collect, store, and query time-series performance
metrics, supporting both local deployments and managed, multi-tenant operation.

¢ Tenacity: Implements robust retry policies to increase resilience when metric extraction or sub-
mission fails due to transient errors.

¢ Grafana: Supports interactive visualization in open-source environments through configurable
dashboards and panels.

Page 39 of 50

HORIZON - 101092646 CloudSkin
29/12/2025 RIA

* Vue.js + Apache ECharts: Used to build integrated dashboards tailored to multi-tenant envi-
ronments within the PyRun platform.

* NoSQL databases: Persist execution metadata and summaries for querying, filtering, auditing,
and historical analysis, while avoiding excessive metric label cardinality.

Monitoring is organised into modular building blocks designed for extensibility and clear sep-
aration of responsibilities. The data flow begins when a user execution is initialised and continues
until metrics and summaries are safely persisted:

e Handler: Acts as the orchestrator that initialises each user execution and launches both the
JobRunner and the Profiler.

¢ JobRunner: Executes the user code and records key high-level attributes such as total duration,
result size, and overall resource usage.

* Profiler: Runs in parallel on each worker and recursively monitors the resource consumption
of processes and threads at configurable sampling intervals.

¢ Transmission module: Encapsulates the logic for dispatching, grouping, or aggregating met-
rics through the appropriate API, depending on the execution environment:

- In the open-source Lithops environment, metrics are sent via an Open Source API to a
local Prometheus server.

— In the PyRun (multi-tenant) environment, metrics are securely sent via a PyRun API to
AWS Managed Prometheus, typically using grouped or pre-aggregated submissions to
reduce request frequency and operational overhead.

* Historical storage: Persists execution summaries in a database to support exploration and au-
diting while preventing high label cardinality in the metrics backend.

Metric management and visualisation are provided through two supported modalities, reflecting
the requirements of open-source and multi-tenant operation. In the open-source environment, met-
rics are dispatched directly to a local Prometheus server and visualised through Grafana dashboards,
with label filtering strategies applied to reduce cardinality and maintain query performance. In the
PyRun platform, monitoring relies on AWS Managed Prometheus with IAM-based authentication
and namespace-based metric segregation. To improve efficiency at scale, metrics are commonly pre-
aggregated before ingestion, which optimises downstream queries and reduces operational costs.
Visualisation in PyRun is integrated into the platform through dashboards built with Vue.js and
Apache ECharts, typically including CPU, memory, disk, and network charts, as well as execution-
based time series; representative views may also include Gantt-style timelines of function executions
across pipeline stages alongside per-execution resource curves.

PyRun further provides specialised APIs and leverages managed services to ensure performance
and availability in multi-tenant environments. These components collectively handle metric inges-
tion, job registration, and large-scale telemetry:

* Open Source API: Sends metrics to a local Prometheus server, suitable for moderate workloads
and environments without strict availability constraints.

e PyRun API (grouped metrics): Aggregates metrics to reduce submission frequency, lowers
network overhead, and uses IAM authentication for secure, scalable transfer to AWS Managed
Prometheus.

¢ PyRun API (job logging): Stores execution metadata in DynamoDB, including unique identi-
tiers, execution timestamps, configuration parameters, and final status, enabling efficient query-
ing, filtering, and auditing of historical runs.

Page 40 of 50

HORIZON - 101092646 CloudSkin
29/12/2025 RIA

]

3 minutes

SR

Figure 23: (top) Fragment of the generic Grafana dashboard. (bottom) Resource usage by execution
id in Grafana.

Detalled Task Durations and Concurrent Calls
caw [v T e T () phond Vo) oo e - v Gl Aete Cals

ik bl il

Cpu Usage

CPU Usage (W) O ivgUsage - mnsage martsage -0 QUantieBd -(- quantie2
100

Figure 24: (top) Gantt chart showing function executions across pipeline stages in PyRun. (bottom)
CPU usage per execution in PyRun.

Page 41 of 50

HORIZON - 101092646 CloudSkin
29/12/2025 RIA

From a scalability perspective, the design with independent Profilers per worker scales linearly
with the number of workers. However, at high concurrency, mass metric submission to self-managed
Prometheus can become a bottleneck; this motivates the use of AWS Managed Prometheus in PyRun,
which provides automatic scalability for large metric volumes, high availability through replication
and fault tolerance, simplified operations by reducing maintenance overhead, and consistent query
responsiveness under heavy load.

To ensure reliability and performance, the implementation includes systematic testing and vali-
dation practices:

* Load testing: Simulates high concurrency to evaluate monitoring overhead and tune sampling
frequency and aggregation strategies.

* Metric validation: Cross-checks internally collected measurements with external systems to
verify consistency and correctness.

¢ Error handling: Applies automatic retries via Tenacity for transient failures during metric ex-
traction or submission, improving robustness end to end.

4.5.4 Model Training
* Objective and Scope

The goal of intelligent optimization is to predict and recommend optimal configurations (mem-
ory, CPU, parallelism, parameters) for serverless pipelines, minimizing both execution time
and cost. We will describe the general Learning Plane methodology that is applied specifically
to our agricultural evapotranspiration pipeline on Lithops.

¢ Execution Data Collection and Storage

Data sources include metadata collected from the Lithops runtime through the JobRunner and
DynamoDB, which provide configuration details and execution identifiers, as well as profiler
metrics delivered to Prometheus or AWS Managed Prometheus, including execution time and
time-series measurements of CPU and memory usage. The agricultural use case dataset com-
prises approximately 150 runs of the evapotranspiration pipeline, where key parameters such
as memory allocation, the number of vCPUs, the number of data slices, and other configuration
settings were systematically varied.

¢ Feature Engineering

In order to capture the key relationships between configuration parameters and execution time,
we transform raw inputs into a more expressive set of features:

* Description of the Agricultural Pipeline

The agricultural pipeline processes climatic and topographic data to compute daily evapotran-
spiration and estimate crop water consumption on Lithops. The system ingests two main cate-
gories of input data: firstly, the CloudSkin climatic layers, which include temperature, humid-
ity, wind speed and radiation; and secondly, the Digital Terrain Models (MDTO05) provided by
the IGN for the Region of Murcia, supplied in GeoTIFF format.

Once these datasets are available, each GeoTIFF file is partitioned using DataPlug into smaller
georeferenced slices. These slices are then stored in S3 and their locations are registered in
DynamoDB, enabling efficient indexing and retrieval.

Subsequently, Lithops distributes the individual slices among a set of workers, so that each
worker processes a specific subset of the territory in parallel. Within every assigned block,
the climatic variables are spatially interpolated in order to guarantee spatial coherence and
continuity across the study area.

Page 42 of 50

HORIZON - 101092646 CloudSkin
29/12/2025 RIA
Raw features

num_files Number of input files processed
splits Number of slices (partitions) used for parallel processing

input_size_gb

Total input data size (GB)

runtime_memory_mb

Memory allocated for the function (MB)

ephemeral_storage_mb

Temporary storage allocated (MB)

worker_processes

Number of worker processes per function invocation

invoke_pool_threads

Number of threads in the invocation pool

vcpus

Number of virtual CPUs allocated

Derived features

memory_per_slice

runtime_memory_mb / splits

vcpus_per_slice

vcpus / splits

slice_size_gb

input_size_gb / splits

cpu_util_per_gb

mean CPU % / input_size_gb

mem_util_per_gb

mean memory MB / input_size_gb

Interaction terms

memory_mb * vcpus

runtime_memory_mb x vcpus

memory_per_slice * slice_size_gb

memory_per_slice x slice_size_gb

Preprocessing

Scaling /Normalization

Standardize continuous variables (zero mean, unit vari-
ance)

Log transform

Apply log(1 + x) to skewed metrics (e.g., duration s, input
size gb)

Categorical encoding

One-hot encode discrete pipeline parameters (e.g., interpo-
lation method)

Table 16: Feature engineering summary

Page 43 of 50

HORIZON - 101092646 CloudSkin
29/12/2025 RIA

After interpolation, the Penman-Monteith equation is applied at pixel level to calculate daily
evapotranspiration. Finally, evapotranspiration values expressed in millimetres per day are
converted into water volume in cubic metres per hectare. These results are assembled into an
output raster, which provides a spatially explicit estimation of crop water usage.

¢ Predictive Modeling

For this work, the XGBoost algorithm was used in regression mode, specifically selected for
its strong performance and high accuracy when working with structured data. This model is
particularly well suited to problems where the features are clearly defined and organised in
tabular form, as is the case with our pipeline runs.

The configuration of the model was not done with fixed values but through a hyperparameter
optimisation process based on Bayesian search using the Optuna library. In this process, differ-
ent values were explored for key parameters such as the maximum tree depth (between 3 and
10), the learning rate (between 0.01 and 0.3), and the number of estimators (between 50 and
500). In addition, other hyperparameters related to data and feature sampling, such as subsam-
ple and colsample_bytree, were tuned, as well as the L1 and L2 regularisation terms, with the
aim of improving the generalisation of the model and avoiding overfitting.

To evaluate the performance of the model, 5-fold cross-validation was applied to a dataset com-
prising 150 runs. In this evaluation, the model achieved a mean absolute error (MAE) of 12.5
seconds and a coefficient of determination R? of 0.92 on the validation folds, which indicates
that it explains most of the variability in the actual execution times. As a comparative reference,
benchmarking was carried out against other common models for this type of problem, such as
Random Forest and LightGBM. In these comparisons, XGBoost obtained between 10% and
15% lower MAE, which supports its selection as the final model.

Once the model has been trained and validated, its operational use is to support decision-
making on the configuration of new pipeline executions. For each new request, different can-
didate configurations are generated, for example combinations of memory, number of vCPUs
and partitions. The model predicts the estimated execution time for each of these configura-
tions and, based on these predictions, the configuration with the shortest estimated duration is
selected, thus optimising compute time before actually launching the execution.

e Comparison and Evaluation of Configuration
For each new run, the Learning Plane:
1. Generates candidate configurations by varying memory, vCPUs, and number of partitions.
2. Uses the XGBoost model to estimate the duration of each candidate.
3. Selects the configuration with the lowest predicted time and returns it for Lithops to apply
in the next run.

¢ DataCockpit: Data Import Panel for the Agricultural Pipeline

DataCockpit is an interactive, web-based panel designed specifically for the agricultural use
case. It acts as a central interface for importing the necessary input datasets, preprocessing
them, and launching the water-consumption pipeline with Al-driven optimisation. By bringing
these steps together in one place, DataCockpit streamlines the user workflow: it provides a
single panel to upload all required data, automatically performs the preprocessing needed to
match the pipeline’s expected format, integrates a predictive optimisation model to suggest
the most suitable execution setup, and then starts the pipeline on Lithops using the optimised
parameters.

Within the panel, the user selects the relevant climatic inputs, including CloudSkin layers such
as temperature, humidity, wind speed, and radiation, as well as topographic inputs in the form

Page 44 of 50

HORIZON - 101092646 CloudSkin
29/12/2025 RIA

4.5.5

of MDTO05 GeoTIFF files from IGN. Once these inputs are chosen, DataCockpit invokes Data-
Plug in the background to partition each GeoTIFF into georeferenced slices, store those slices
in S3 while registering their references in DynamoDB, and distribute the slices to individual
Lithops workers so they can be processed in parallel.

After the import step is complete, the user can trigger the Learning Plane’s predictive model
with a single click. DataCockpit then requests runtime estimates for a range of candidate con-
figurations, recommends the configuration that minimises both time and cost, automatically
applies the suggested memory, vCPU, and partitioning parameters, and launches the pipeline
execution on Lithops.

Overview of DataPlug DataPlug is a serverless library designed to partition large scientific
data files stored in object storage efficiently, without altering the original data. It supports
DataCockpit’s data import process by slicing GeoTIFF files into manageable chunks. DataPlug
now includes support for Cloud Optimised GeoTIFF (COG), which enables direct partitioning
of cloud-optimised terrain models and other high-resolution geospatial datasets. Expert users
have validated DataPlug’s partitioning workflow in production-like environments, confirming
that the resulting slices preserve geospatial precision and meet the performance requirements
needed for distributed processing.

The documentation has also been extended to explain several approaches for configuring access
to data stored in S3, including the use of environment variables such as AWS Access Key ID
and AWS Secret Access Key, AWS CLI profiles defined in the shared credentials file, IAM roles
provided through EC2 instances or ECS/EKS task profiles, and automatic integration within
managed runtimes such as PyRun. By combining robust partitioning with seamless integra-
tion into DataCockpit, DataPlug enables a fully automated end-to-end workflow that preserves
geospatial accuracy and promotes optimal resource utilisation when running the agricultural
pipeline.

Model Comparison and Evaluation

Results, Savings, and Return on Investment Execution time is reduced by up to 79.9% compared
with sub-optimal Design Space Analysis configurations. The mean absolute error is 75.3%
lower than when using the historical mean. The cost per execution is 30% lower, equivalent
to USD 0.069 per run, which represents 30% of a baseline cost of USD 0.23.

The initial training cost is USD 38.75 (approximately 150 runs at USD 0.23 each). With a per-
run saving of USD 0.069, the break-even point is reached after about 562 runs, which at a rate
of 10 runs per day corresponds to roughly 56 calendar days. Projected cumulative savings
grow linearly, reaching the break-even point of USD 38.75 after approximately two months and
exceeding USD 500 by month 24.

Conclusions

This project has demonstrated the feasibility of executing and optimising the Water Consump-
tion pipeline in serverless environments by leveraging open data from CloudSkin and the Span-
ish National Geographic Institute (IGN), and by using modern technologies for data partition-
ing, orchestration, and machine learning. Pipeline monitoring was implemented through in-
strumentation with tools such as psutil, Prometheus, and Grafana, enabling real-time collection
of detailed execution metrics and supporting the identification of bottlenecks as well as contin-
uous performance improvement. Optimisation through the Learning Plane was achieved
with a predictive XGBoost model, tuned with Optuna, which estimates pipeline duration
from configuration features and recommends the most suitable resource settings, thereby
reducing execution time and cost without manual intervention. The integration of DataPlug,
which efficiently partitions digital terrain models, with DataCockpit, which provides an inter-
active interface to import data and launch the pipeline using the Al-recommended configura-
tion, has simplified experimentation and improved usability for scientific users. In addition, a

Page 45 of 50

HORIZON - 101092646 CloudSkin
29/12/2025 RIA

S Data Cockpit

Efficiently manage and explore your data

Jeiosd e %1 Expiorer By Datanety Vaisaosse Dadid e

N
Chonediiin Datmen |_ » |

L
& gt ©loudalim Dala

oo [

Cloudhkan Logu

Starting Cloudskin data Import...
All Clowdskin data imported successfully.

Gecspatial Section
e
Geoipatial Loge:

Starting ASC File wpload...
Isporting files from ANS Open Regietry...

OTHS/H5C/PHOA_MOTOS_ETRSST_SMUIG_0O7S_LID.TLF alresdy exists
OTies/asc/PHOA_MOTES_ETRSSS_WUIG_STT_LID t1f alresdy exists
DTss/ a5/ PROA_MDTES_ETRSSS_MUBS_#3978_LID.E1f already exists
OTHAS B/ PROA_MDTOS_ETRSS9_MUIS_976_LID.Eif alresdy exists
OTHS/H5C/PHOA_MOTOS_ETRSST_SMUIG_897_LID.TIF alresdy exists

Optimal Configuration [AI}

Zearching for optimal configuration...

Model loaded from (atboost_sodel.bin.

optispl configuration foud;
n_tiles: 7

num_files: 5

input _size gb: 8.25

runtise sescry sb: 3988
tpheseral_storage_sb: §i%d
wOrier_processes: 1
invoke_pool_threads: &4
vepu: 1.7

Figure 25: DataCockpit panel for importing CloudSkin and GeoTIFF data, partitioning via DataPlug,
and executing the agricultural water consumption pipeline with Al-optimized parameters.

Page 46 of 50

HORIZON - 101092646 CloudSkin

29/12/2025 RIA
é‘ —@— Total Savings
2
Eﬂ Break-even
s Point
<
@
= 0 6 12 18 24
Pt

Time (Months)

Figure 26: Projected cumulative savings assuming 10 runs/day. Break-even at approximately two
months.

reproducible and scalable workflow was enabled through Lithops and managed services such
as AWS S3, IAM, and DynamoDB, allowing PyRun to execute the pipeline at scale without
dedicated infrastructure while adapting to different configurations and data volumes.

Taken together, these results validate how the developed technology supports computing on
the continuum, enabling advanced agricultural data analysis as a service. By dynamically se-
lecting the most efficient execution configuration and exploiting elastic, serverless resources,
the approach increases processing speed while bounding and reducing computation costs, and
it consequently lowers the carbon-footprint impact associated with running large-scale data-
processing workloads.

Page 47 of 50

HORIZON - 101092646 CloudSkin
29/12/2025 RIA
5 Conclusions

The Learning Plane provides a practical framework and a list of models at the orchestration layer
of the CloudSkin platform. This deliverable demonstrates how Al is integrated into and helps with
real-world use cases.

Page 48 of 50

HORIZON - 101092646 CloudSkin
29/12/2025 RIA

References

[1] P.Liu, G. Bravo-Rocca, J. Guitart, A. Dholakia, D. Ellison, and M. Hodak, “Scanflow-k8s: Agent-
based framework for autonomic management and supervision of ML workflows in kuber-
netes clusters,” in 2022 22nd IEEE International Symposium on Cluster, Cloud and Internet
Computing (CCGrid), pp. 376-385, 2022.

[2] G. Bravo-Rocca, P. Liu, J. Guitart, A. Dholakia, D. Ellison, J. Falkanger, and M. Hodak, “Scan-
flow: A multi-graph framework for machine learning workflow management, supervision, and
debugging,” Expert Systems with Applications, vol. 202, p. 117232, 2022.

[3] A.Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. u. Kaiser, and I. Polo-
sukhin, “Attention is all you need,” in Advances in Neural Information Processing Systems
(I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,
eds.), vol. 30, Curran Associates, Inc., 2017.

[4] A. Zeng, M. Chen, L. Zhang, and Q. Xu, “Are Transformers Effective for Time Series Forecast-
ing?,” arXiv, May 2022.

[5] S.-A. Chen, C.-L. Li, S. O. Arik, N. C. Yoder, and T. Pfister, “TSMixer: An all-MLP architecture
for time series forecast-ing,” Transactions on Machine Learning Research, 2023.

[6] V. Ekambaram, A. Jati, N. Nguyen, P. Sinthong, and J. Kalagnanam, “Tsmixer: Lightweight
mlp-mixer model for multivariate time series forecasting,” in Proceedings of the 29th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, KDD 23, (New York, NY,
USA), p. 459469, Association for Computing Machinery, 2023.

[7] A. Gu, L. Johnson, K. Goel, K. K. Saab, T. Dao, A. Rudra, and C. Re, “Combining recurrent, con-
volutional, and continuous-time models with linear state space layers,” in Advances in Neural
Information Processing Systems (A. Beygelzimer, Y. Dauphin, P. Liang, and J. W. Vaughan, eds.),
2021.

[8] L. Graf, T. Ortner, S. WoZniak, and A. Pantazi, “FlowState: Sampling Rate Invariant Time Series
Forecasting,” arXiv, Aug. 2025.

[9] L. Graf, T. Ortner, S. WozZniak, and A. Pantazi, “Flowstate: Sampling-rate invariant time se-
ries foundation model with dynamic forecasting horizons,” in Recent Advances in Time Series
Foundation Models Have We Reached the 'BERT Moment’?, 2025.

[10] J. T. Smith, A. Warrington, and S. Linderman, “Simplified state space layers for sequence mod-
eling,” in The Eleventh International Conference on Learning Representations, 2023.

[11] A. Gu, L. Johnson, A. Timalsina, A. Rudra, and C. Re, “How to train your HIPPO: State space
models with generalized orthogonal basis projections,” in International Conference on Learning
Representations, 2023.

[12] A.Gu, T. Dao, S. Ermon, A. Rudra, and C. Ré, “Hippo: Recurrent memory with optimal polyno-
mial projections,” Advances in neural information processing systems, vol. 33, pp. 1474-1487,
2020.

[13] A.FE Ansari, L. Stella, C. Turkmen, X. Zhang, P. Mercado, H. Shen, O. Shchur, S. S. Rangapuram,
S. P. Arango, S. Kapoor, et al., “Chronos: Learning the language of time series,” arXiv preprint
arXiv:2403.07815, 2024.

[14] A. Auer, P. Podest, D. Klotz, S. Bock, G. Klambauer, and S. Hochreiter, “Tirex: Zero-shot fore-
casting across long and short horizons,” in 1st ICML Workshop on Foundation Models for
Structured Data, 2025.

Page 49 of 50

HORIZON - 101092646 CloudSkin
29/12/2025 RIA

[15] H. Wu, J. Xu, J. Wang, and M. Long, “Autoformer: Decomposition transformers with auto-
correlation for long-term series forecasting,” in Advances in Neural Information Processing
Systems (M. Ranzato, A. Beygelzimer, Y. Dauphin, P. Liang, and]J. W. Vaughan, eds.), vol. 34,
pp- 22419-22430, Curran Associates, Inc., 2021.

[16] T. Zhou, Z. Ma, Q. Wen, X. Wang, L. Sun, and R. Jin, “FEDformer: Frequency enhanced decom-
posed transformer for long-term series forecasting,” in Proceedings of the 39th International
Conference on Machine Learning (K. Chaudhuri, S. Jegelka, L. Song, C. Szepesvari, G. Niu, and
S. Sabato, eds.), vol. 162 of Proceedings of Machine Learning Research, pp. 27268-27286, PMLR,
17-23 Jul 2022.

[17] H. Zhou, S. Zhang, J. Peng, S. Zhang, J. Li, H. Xiong, and W. Zhang, “Informer: Beyond efficient
transformer for long sequence time-series forecasting,” in Proceedings of the AAAI conference
on artificial intelligence, vol. 35, pp. 11106-11115, 2021.

[18] H. Wu, T. Hu, Y. Liu, H. Zhou, J. Wang, and M. Long, “Timesnet: Temporal 2d-variation model-
ing for general time series analysis,” arXiv preprint arXiv:2210.02186, 2022.

[19] S. Hochreiter and]. Schmidhuber, “Long short-term memory,” Neural Computation, vol. 9,
no. 8, pp. 1735-1780, 1997.

[20] BSC, “Marenostrum 5: Technical information.” https:/ /www.bsc.es/marenostrum /marenostrum-
5, 2025.

[21] A. W. Services, “Understanding the lambda execution environment lifecycle,” 2025.

[22] K. Ovchinnikova, V. Kovalev, L. Stuart, and T. Alexandrov, “Offsampleai: artificial intelligence
approach to recognize off-sample mass spectrometry images,” BMC bioinformatics., vol. 21,
no. 1, 2020-12.

[23] G. Désa, “The tight bound of first fit decreasing bin-packing algorithm is ffd (i) 11/9
opt (i)+ 6/9,” in International Symposium on Combinatorics, Algorithms, Probabilistic and
Experimental Methodologies, pp. 1-11, Springer, 2007.

Page 50 of 50

	Executive summary
	Learning Plane
	Data-connector Framework
	Agent Architecture
	Agent Model Inference
	Agent Sensors
	Agent Actuators
	Agent Communication

	Data-connector Demonstration
	Experimental Settings
	Smart Migration Scenario Settings
	Data-connector Agent Implementation
	Data-connector Agent Deployment
	Experimental Results

	Tutorial

	Learning Plane Models
	FlowState: A novel State-Space based Time Series Foundation Model
	FlowState Architecture
	SSM Encoder
	Functional Basis Decoder
	Foundational model pretraining
	Forecasting procedure

	Time-series models
	Autoformer
	FEDformer (Fourier Enhanced Decomposition Transformer)
	Informer
	TimesNet
	LSTM (Long Short-Term Memory)
	ETS (Holt–Winters Exponential Smoothing)

	Regression models
	Linear Regression
	Random Forest
	XGBoost (eXtreme Gradient Boosting)
	CatBoost (Categorical Boosting)

	Integration of the Learning Plane
	Overview
	Usecase: Mobility
	Problem Definition
	Data Collection
	Data Preprocessing
	Model Training
	Model Evaluation and Comparison

	Usecase: Metabolomics
	Problem Definition
	Data Collection
	Model Training
	Model Comparison and Evaluation

	Usecase: Surgery
	Problem Definition
	Data Collection
	Data Preprocessing
	Model Training
	Model Comparison and Evaluation

	Usecase: Agriculture
	Problem Definition
	Data Collection
	Technologies and Core Components
	Model Training
	Model Comparison and Evaluation

	Conclusions

