GD Funded by

CloudSkin O the European Union

HORIZON EUROPE FRAMEWORK PROGRAMME

CloudSkin

(grant agreement No 101092646)

Adaptive virtualization for Al-enabled Cloud-edge
Continuum

D5.4 Proof of Concept in different Data Domains

Due date of deliverable: 31-12-2025
Actual submission date: 29-12-2025

Start date of project: 01-01-2023 Duration: 36 months

Summary of the document

Document Type Report
Dissemination level Public
State v1.0
Number of pages 69

WP/Task related to this document

WP5 / T5.4, T5.5, T5.6, T5.7

WP/Task responsible BSC, URV, NCT, ALT
Leader Peini Liu (BSC)
Technical Manager Peini Liu (BSC)

Quality Manager

Ardhi Putra Pratama Hartono (TUD)

Author(s)

Peini Liu (BSC), Joan Oliveras Torra (BSC), Marc Palacin
(BSC), Jordi Guitart (BSC), Josep Lluis Berral (BSC), Ra-
mon Nou (BSC), Pol Garcia (BSC), Jordi Torres (BSC),
Maria A. Serrano (NBC), Michail Dalgitsis (NBC), Javier
Santaella Sanchez (CNX), Ardhi Putra Pratama Hartono
(TUD), Jose Miguel Garcia (ALT), Ratl Gracia (DELL), Hos-
sam Elghamry (DELL), Alan Cueva (DELL), Reuben Docea
(NCT), Marc Sanchez Artigas (URV), Josep Calero Santo
(URV), Carlos Segarra (IMP)

Partner(s) Contributing

BSC, NBC, CNX, NCT, DELL, URV, IMP, ALT

Document ID

CloudSkin_D5.4_Public.pdf

Abstract

Report on the results and experiments from all use cases in
the WP, and will report on the experimentation and tests
for methods integration on the different use cases. All gen-
erated data concerning the workloads and performance of
systems and analytics will also be included in the report,
with special interest in provide knowledge to other com-
munities related with the use cases.

Keywords

Cloud-Edge Continuum, Use cases, Experiments.

History of changes

Version | Date Author Summary of changes

0.1 01-12-2025 | Peini Liu First draft.

0.2 02-12-2025 | Peini Liu Add Mobility use case.

0.3 03-12-2025 | Javier Santaella Modify Mobility use case story and hardware.
Sanchez

0.4 03-12-2025 | Maria A. Serrano Update Mobility use case platform.

0.5 03-12-2025 | Marc Palacin, Michail Add Mobility use case demo.
Dalgitsis

0.6 03-12-2025 | Ardhi Putra Pratama Confidential computing in use cases.
Hartono

0.7 09-12-2025 | Radl Gracia Add Surgery use cases.

0.8 12-12-2025 | Jose Miguel Garcia Add Agriculture use cases.

0.9 15-12-2025 | Reuben Docea Add Surgery use cases.

1.0 16-12-2025 | Peini Liu, Joan Oliveras | Update Mobility use case results.
Torra, Michail Dalgitsis

1.1 17-12-2025 | Josep Calero Santo, Add Metabolomics use case.
Marc Sanchez-Artigas

12 23-12-2025 | Carlos Segarra Add C-Cells description in Metabolomics use

case.
1.3 26-12-2025 | Peini Liu Final version.

HORIZON - 101092646 CloudSkin

29/12/2025 RIA
Table of Contents

1 Executive summary 2

2 Use case: Mobility 3

21 Overview 3

211 Businessstory 3

2.1.2 Why this use case needs the compute continuum? 3

2.2 Cloud-Edge continuum infrastructure for mobility usecase 4

221 Cloud-Edgehardware 4

222 CloudSkinplatform 4

2.3 Experiments, KPIs and benchmarks 10

24 Results e 10

25 Demos 17

3 Use case: Metabolomics 19

31 Overview 19

311 Businessstory 20

3.1.2 Why this use case needs the compute continuum? 20

3.2 Cloud-Edge continuum infrastructure for the metabolomics usecase 21

321 CloudSkinplatform 21

3.2.2 Challenge CH1: Cost-efficiency with serverless cloud functions 22

3.2.3 Challenge CH2: Privacy-preserving inference on on-premises edge cluster . . . 23

324 Cloud-Edgehardware 28

3.3 Experiments, KPIs, benchmarks and results 29

34 Demos e 35

4 Use case: Surgery 39

41 OVerview 39

41.1 Businessstory e 40

4.1.2 Why this use case needs the compute continuum? 40

42 Cloud-Edge continuum infrastructure for the surgery usecase 41

421 CloudSkinplatform 41

422 Cloud-Edgehardware 42

43 Experiments, KPIs and benchmarks 42

44 Results 44

45 Demos e 54

5 Use case: Agriculture 56

51 Overview e 56

51.1 Businessstory 56

5.1.2 Why this use case needs the compute continuum? 56

5.2 Cloud-Edge continuum infrastructure for the mobility usecase 56

521 Cloud-Edgehardware 56

522 CloudSkinplatform 57

53 Experiments, KPIs and benchmarks 58

54 Results e 60

55 Demos e 63

6 Conclusions 68

HORIZON - 101092646
29/12/2025

List of Abbreviations and Acronyms

API Application Programming Interface
CC Creative Commons

CDF Cumulative Distribution Function
CEC Cloud-Edge Continuum

CH Challenge

CPR Cost Per Request

Csv Comma-separated values

DOI Digital Object Identifier

EC2 Elastic Compute Cloud

ECS Elastic Container Service

Faa$S Function as a Service

FN False Negative

FP False Positive

FPS Frame per Second

IPS Images Per Second

JCT Job Completion Time

K-NN k-Nearest Neighbors

KPI Key Performance Indicator
LSTM Long Short-Term Memory

MSE Mean Squared Error

PoC Proof of Concept

REST Representational State Transfer
S3 Simple Storage Service

SGX Software Guard Extensions
SLA Service Level Agreement

SLO Service Level Objective

SSIM Structural Similarity Index Measure
TEE Trusted Execution Environment
TN True Negative

TP True Positive

UUID Universally Unique Identifier
VA Video Analytics

WASM WebAssembly

Page 1 of 69

CloudSkin
RIA

HORIZON - 101092646 CloudSkin
29/12/2025 RIA

1 Executive summary

This deliverable reports on the results and experiments from all use cases in the WP, and will report
on the experimentation and tests for methods integration on the different use cases. All generated
data concerning the workloads and performance of systems and analytics will also be included in the
report, with special interest in provide knowledge to other communities related with the use cases.

Each use case starts with the requirements of the business in a Cloud-Edge continuum, and is
then followed by its used Cloud-Edge hardware and CloudSkin platform. Finally, each uses case
provides their experiments and results as well as some demo showcases. Table 1 shows the main
experiments and KPIs that the use cases focus on.

Table 1: Summary of use cases KPIs.

Use case Experiments KPIs
(KPIs prefixed with “uc” mean use
case-specific KPIs (e.g., ucKP1)
Mobility Experiment 1: Intelligent application migration between | ucKPI1l: App QoS;
Edge and Cloud; ucKPI2(KPI2,KPI3,KPI13):
Experiment 2: Real-time service migration and cost Application Performance and Cost;
analysis; ucKPI3(KPI13): Migration DNS
Experiment 3: Dynamic DNS solution. Latency
Metabolomics Experiment 1: Lithops Serve against state-of-the-art ucKPI1:Latency;
inference systems (CH1); ucKPI2:Throughput;
Experiment 2: Lithops Serve evaluation of cost-driven ucKPI3:Performance/$;
scaling (CH1); ucKPI4:Cost($);
Experiment 3: Performance of GEDS-based ucKPI5:SSIM;
WebAssembly Units for preprocessing images (CH2); ucKPI6:Job completion time (JCT)
Experiment 4: Evaluation of image reconstruction for vector embeddings($)
privacy and latency (CH2);
Experiment 5: Evaluation of job completion time under
SLO (CH2);
Experiment 6: Elastic C-Cell Scaling (CH2)
Surgery Experiment 1: Smart CPU & GPU allocation for ucKPI1(KPI2): Edge Resource
confidential real-time surgical AI models; Utilization;
Experiment 2: Predictive auto-scaling streaming ucKPI2(KPI3): Real-time Edge
infrastructure to handle fluctuating workloads; Processing;
Experiment 3: Advance surgical stream data ucKPI3(KPI6): Confidentiality (TEE
management across the Cloud-Edge. execution);
ucKPI4(KPI11): Scalability (lower
latency streaming);
ucKPI5(KPI14): Performance
(in-transit data management).
Agriculture Experiment 1. Agricultural Dataspace; ucKP1: Validation of stakeholder
Experiment 2. Continuum integration analysis. requirements.
ucKPI2: MAE (s).
ucKPI3: R2.
ucKPI4: Duration.

Page 2 of 69

HORIZON - 101092646 CloudSkin
29/12/2025 RIA

2 Use case: Mobility
2.1 Overview
2.1.1 Business story

Cellnex, a leading provider of telecommunications infrastructure, is undergoing a significant digital
transformation to enhance its operational efficiency and service offerings. One of the critical chal-
lenges faced by Cellnex is the efficient management of its Video Analytics (VA) services, which are
essential for various applications such as security monitoring and traffic management. The tradi-
tional methods of service deployment and management are not sufficient to handle the dynamic and
complex requirements of modern VA applications. These applications demand high computational
power, low latency, and seamless scalability, which are difficult to achieve with conventional infras-
tructure. To address these challenges, Cellnex has adopted the CloudSkin platform, which leverages
advanced containerization techniques and Al-driven orchestration capabilities, as well as supporting
orchestration at Cloud-Edge Continuum.

There are two objectives at the mobility use case:

* Objective 1. Application placement on edge and cloud: The first experiment focuses on de-
ploying an Al-based VA application for vehicle detection using real-time video data from the
circuit. The target application can operate either on the edge node or on cloud resources. The
objective is to validate CloudSkin’s ability to determine the most suitable execution environ-
ment, taking into account service requirements such as latency, processing efficiency and re-
source availability.

* Objective 2. Intelligent application migration between edge and cloud: The second exper-
iment evaluates CloudSkin’s capability to migrate the VA application dynamically between
edge and cloud, triggered by factors such as QoS demands. This objective aims to validate
the Al-driven orchestration mechanisms, ensuring VA application service performance using
migration under a dynamic environment.

The expected outcome is a practical demonstration that intelligent orchestration can significantly
improve the deployment, performance and manageability of VA services across distributed infras-
tructures. This validation supports Cellnex’s broader strategic goal of strengthening its technological
leadership and preparing its infrastructure for future mobility and security services that rely on ad-
vanced edge capabilities.

2.1.2 Why this use case needs the compute continuum?

The adoption of a cloud-edge continuum is crucial for VA because it offers a balanced approach to
processing the application that combines the benefits of both edge computing and cloud computing.

* Low-latency, bandwidth saving benefits from edge computing: edge computing enables pro-
cessing the video analytics data closer to the source, which reduces the time taken for analytics
and could get real-time results.

* Scalability and flexibility of cloud computing: cloud computing provides elastic resource al-
location and easily scales up and down sufficient computing resources. For instance, when
VA has high user demand, it can request computation resources during peak hours. High-
performance computing resources power in the cloud can accelerate the complex processing of
the video data.

¢ Efficiency and Costs: Utilizing a cloud-edge continuum allows for the dynamic deployment
and migration of VA applications across distributed resources based on geographical needs,
ensuring efficient response to user requests and events and saving costs.

Page 3 of 69

HORIZON - 101092646 CloudSkin
29/12/2025 RIA

2.2 Cloud-Edge continuum infrastructure for mobility use case
2.21 Cloud-Edge hardware

Cellnex has a testbed located in Castelloli Parcmotor Circuit. More specifically, for the CloudSkin
project and mobility use case, cloud-edge hardware has been defined:

* Cloud (Control Room): Two virtual machines have been deployed in Lenovo SR650 servers
running VMware vSphere to create different virtual machines (VMs) for various services and
apps (referred to as the “Local Cloud”) with the purpose of running services in “the cloud.”

¢ Edge (Pole): Node 1, A Samsung Wisenet PNO-9080R camera captures real-time images from
a specific area of the circuit and sends these images to other devices via the RTSP protocol for
analysis. Additionally, an SE350 edge server has been deployed in Node 1 with the purpose of
running services at “the edge.” Node 1 also features an energy control and management system
called ORION.

- 1 iy
Grid cc_mneCted
Fiber
EDGE SITE

CIRCUIT PARCMOTOR CASTELLOLI

Figure 1: CloudSkin Hardware for Mobility Use Case.

2.2.2 CloudSkin platform

The aim of the CloudSkin mobility use case is to facilitate intelligent service migration between cloud
and edge environments, optimizing resource allocation and reducing service latency. Moreover, to
provide an innovative approach ensures that video analytics services can be dynamically managed
and migrated to meet changing demands, thereby improving the overall quality of service (QoS) and
operational efficiency. Figure 2 shows the high-level CloudSkin platform to support the mobility use
case. It includes a Monitor to collect the system/service status, an Executor to adjust the system/ser-
vice, and also a Planner to analyze and understand the scenario to make a decision.

For the software stack towards the Mobility Use case, multiple components are needed. The
software components that implement the CloudSkin architecture for the mobility use case are shown
in Figure 3.

* Application Registries: The application registries serve as the storage location for the con-
tainerized VA application, the orchestration artifacts, and the associated services to implement
the mobility use case. It includes a container registry for the application and services images,
a Helm Chart registry for maintaining the associated cloud-native deployment specifications,
and a Block registry, for the orchestration artifacts. More details are provided in Section 2.2.2.

* Orchestration Platform: The NearbyOne Orchestrator serves as the multi-site service orches-
tration engine in the CloudSkin architecture. It enables the lifecycle management of cloud-

Page 4 of 69

HORIZON - 101092646 CloudSkin
29/12/2025 RIA

Infrastructure (mobility use case as example)

| models+polices ‘
Planner

Fog Nodes

Actuators Sensors

Data Retrieval
(status)

Recommendations
and Predictions

Data Feed
(status)

Monitoring
(telemetry)

Control Center
(overseer system)

Policy Enforcement (action over system) T

Figure 2: CloudSkin High-level Architecture for the Mobility use case.

native services and infrastructure across heterogeneous edge and cloud sites. NearbyOne sim-
plifies the deployment, scaling, and automation of applications using a declarative approach. It
supports closed-loop orchestration, where feedback from external tools (e.g. Planner) triggers
real-time decisions via its exposed northbound interface (NBI) API. A detailed description of
the Orchestration platform is provided in Section 2.2.2.

¢ Learning Plane: Learning Plane has a set of components to achieve intelligent management.
It connects the data for analyzing and triggers the changes within the Cloud Edge Continuum
with optimized decisions to achieve business goals. Detailed implementation is in Section 2.2.2.

Registries Besides the CloudSkin software architecture components, other relevant external entities
necessary for the operation of the mobility use case are the registries. Registries are the centralized
repositories used to store and access application or service essential components like orchestration
artifacts and container images.

The orchestration platform, described in Section 2.2.2, interacts with various types of registries,
each serving a unique purpose in the orchestration and deployment of applications. Figure 4 shows
the NearbyOne orchestration resources (on the left) and the registries associated (on the right).

¢ Container Registry: This is the repository for container Docker images. These images are es-
sential building blocks for deploying services and applications. The registry ensures a reliable
and secure distribution of images across different environments. NearbyOne pulls images from
public container registries like Docker Hub!, or private registries, depending on the require-
ments and security considerations. The CloudSkin container registries are based on Harbor?
and GitLab® projects.

¢ Helm Chart Registry: Helm charts are used to define, install, and upgrade complex Kubernetes
applications. The Helm Chart registry is where these charts are stored. The charts in this
registry reference the images stored in the Container Registry. CloudSkin Helm Chart registry
is implemented under the Harbor open-source project, but the orchestration platform can also
interact with public registries that support OCI, such as Docker Hub.

¢ Block Registry: Similar to the Helm Chart Registry, the Block Registry is where the NearbyOne
Blocks are stored, which are higher-level components encapsulating a service or application to
be managed by NearbyOne orchestration platform. Each Block references a Helm chart and,
in turn, container images. The CloudSkin Helm Chart registry is also implemented under the
Harbor open-source project.

It is important to note that appropriate access controls and security measures are implemented to
protect the integrity and confidentiality of the data in these registries.
Thttps:/ /hub.docker.com/

Zhttps:/ /goharbor.io/
Shttps:/ /about.gitlab.com

Page 5 of 69

HORIZON - 101092646
29/12/2025

"
Arifacts/images
L 4

Container repo

Helm Chart repo

CloudSkin
RIA

Observalibility Stack

NearbyOne Orchestration Platform

Management Dashboard

I.—v

4_

Nearby Orchestrator

7

‘ Dynamic DNS
Service

Orchestration Service

HNEARBY
COMPUTING

A APls
Block repo
Edge Cloud
@ESSD \ SRE50 Ciloud
Edge o
o w = % = & |
o9 T | 5
A
infer-pipelines & 9 9 Z infer-pipelines o S Eq
.) ; A i}
video analytics }_ N | Migrate | | _|_ |y, video analytics; Data-
app) sensor CONNECIOr | iy -enr
K exporter & """"" exporter
CNX | Orchestration - Learning Plane
D infrastructure platform l VA application (data-connector)
m”;ﬁ;w 5 Monitoring Orchestration Planning
workflow workflow workflow

Figure 3: CloudSkin Implementation Architecture.

Orchestration Platform The orchestration platform of the mobility use case is NearbyOne, an edge-
to-cloud orchestrator. NearbyOne provides mechanisms to automate and orchestrate the infrastruc-
ture located in Castelloli, and the deployment of components, such as the monitoring stack, the
learning plane, or the mobility use case applications. The NearbyOne controller itself is a cloud-
native platform, packaged as a Helm chart and installed on a Kubernetes platform in a public cloud
(AWS), from where it centrally orchestrates applications, services, and infrastructure resources across
all managed clusters.

The main components of NearbyOne for the CloudSkin mobility use case are:

1) The Management Dashboard, an intuitive Graphical User Interface (GUI), that provides users
with a tailored experience, allowing them to manage their resources, services, and configurations
with precision. See CloudSkin deliverable D2.3[1] for more details.

2) The Observability Stack integrates Prometheus, Thanos, Grafana, and MinlO into a scalable
multi-cluster monitoring solution (i.e., Monitor). See CloudSkin deliverable D2.3[1] for more details.

3) The Nourthbound Interface (NBI), an API that enables the communication between the Near-
byOne orchestrator and the Learning Plane for Al-driven orchestration and management of services
and applications (i.e., Executor). See CloudSkin deliverable D2.3[1] for more details.

4) The Nearby Blocks, the core orchestration resources, are the building blocks for application
and service deployment and automation. Each Block encapsulates deployment logic, configuration
rendering, placement rules, and scaling strategies. Nearby blocks orchestration resources are de-
scribed as YAML objects that declare the desired state of the system. Then, the platform’s reconcil-
iation engine continuously works to converge the actual state of managed resources to match the
declared state, ensuring self-healing and eventual consistency. See CloudSkin deliverable D2.3[1] for
more details.

5) The Dynamic DNS Service provides a seamless way to maintain stable, user-facing URLs
for cloud-native services that may dynamically migrate across multiple Kubernetes clusters. In dis-

Page 6 of 69

HORIZON - 101092646 CloudSkin

29/12/2025 RIA
4 N
Nearby Block * Nearby Block registry .
(5 HARBOR
D
Placement Policies Configuration Policies Eltsgz;‘/llﬁ_g_glsg;\ll(.snearbvcomputlnq.com
(YAML) (YAML)
Application/Services Helm Chart Helm registry
iy \\ %=, HARBOR
HELM https://reqistry.nearbycomputing.com
= cloudskin-apps
[kubernetes
Application/Service Container : :
Container registry :
(5 HARBOR
‘& \\ https://reqistry.nearbycomputing.com
docker public
https:/reqistry.qgitlab.bsc.es L GltLab
\‘ /) datacentric-computing/cloudskin-project

Figure 4: CloudSkin Mobility use case registries.

tributed edge-to-cloud environments, the IP endpoints of applications frequently change as the or-
chestrator relocates workloads for performance, resilience, or resource-optimization reasons. To pre-
vent disruptions, the dynamic DNS service continuously updates DNS records to reflect the current
location of each service. This ensures that client applications can always reach the correct endpoint
without requiring any changes in configuration or knowledge of where the service is running. By
tightly integrating with the orchestration workflow, the dynamic DNS service acts as a real-time ser-
vice discovery mechanism, bridging the gap between dynamic service mobility and the need for
stable, transparent access. NearbyOne directly manages DNS records during deployment and mi-
gration. As a result, client requests to a stable URL are always routed to the correct service endpoint,
even as service instances move between clusters.

Figure 5 shows a flow diagram of the DNS service. The NearbyOne orchestrator deploys and mi-
grates services while updating the shared local DNS server to ensure continuous client access. The
orchestration begins with the deployment of the video analytics application on the edge Kubernetes
cluster. Upon deployment, the orchestrator configures the shared local DNS server to map the ser-
vice URL to the edge ingress IP. Client applications can then resolve the URL and interact with the
service as normal. Meanwhile, the Learning Plane (see Section 2.2.2) observes system metrics and us-
age patterns. When conditions indicate the need to migrate the service (e.g., due to load or network
considerations), it triggers a migration request via the NBI. Upon receiving the trigger, NearbyOne
deploys a video analytics application instance on the cloud cluster. When the service is fully initial-
ized, the orchestrator removes the original edge instance and subsequently updates the DNS record
to reflect the cloud ingress IP. This approach ensures that service migrations are seamless and trans-
parent to clients. It unifies service orchestration and DNS-based discovery into a single, intelligent
control loop that is adaptive, location-aware, and robust in hybrid edge-cloud scenarios.

To support this closed-loop orchestration, the mobility use case is built on a modular and ex-
tensible architecture composed of several integrated components. The video analytics application,
the dynamic DNS solution, and the observability stack are encapsulated as different Nearby Blocks.
The Learning Plane serves as the intelligent trigger, initiating orchestrator actions based on observed
system conditions. Together, these components form a cohesive, adaptive framework for managing
cloud-edge services with zero-disruption migrations and intent-driven automation.

Learning Plane for Intelligent Service Migration Learning Plane is a concept of using ML method-
ologies for efficiently solving management challenges, which does not implement a global model or
plan. Businesses can focus on what they need to customize Learning Plane to fulfill the manage-

Page 7 of 69

HORIZON - 101092646 CloudSkin
29/12/2025 RIA

NearbyOne Orchestrator Edge K8s Cluster Local DNS Server Client Learning Plane Cloud K8s Cluster

Deploy DL Streamer

Create DNS A record (URL — Edge NGINX Ingress IP)

Resolve service URL

Retumn IP of Edge ingress (10.17.7.92)

Observes metrics and traffic patterns

Trigger migration to Cloud

Deploy DL Streamer

Remove DL Streamer

Update DNS A record (URL — Cloud NGINX Ingress IP)

Resolve service URL

Return IP of Cloud ingress (10.17.252.14)

Access DL Streamer (migrated)

NearbyOne Orchestrator Edge K8s Cluster Local DNS Server Client Learning Plane Cloud K8s Cluster

Figure 5: CloudSkin Mobility use case service orchestration and DNS update flow from edge to cloud
using NearbyOne.

ment objective. The learning plane abstraction is introduced in the previous paper as data-connector
[2] and deliverable D5.3, including a sensor that detects changes in internal and external states, an
ML pipeline that responds to relevant observations, and an actuator that activates specific processes
within the environment.

Figure 6 shows the mobility use case of intelligent service migration using learning plane under
dynamic user demands at Cellnex. The data-connector agent proactively calls model inference to
predict the QoS of a target VA application in the cloud and the edge, and also periodically watches the
application QoS prediction results with a QoS-aware policy to decide if triggering the VA application
migration.

Control Data-
Plane connector
agent
Sensor Actuator

Data Sources Nearby .
(Scanflow Platform
Tracker)

L V, .
Cl Edge

oud VA application,
Exporter
Data Sources Model | | “°°°° Model Data Sources
(Prometheus) inference inference (Prometheus)

Figure 6: Intelligent migration of VA application using Learning Plane.

1) Data Exporter: Given dynamic user demands within Cellnex, VA application requires service
quality monitoring in real time. To achieve this, the application’s performance metrics are continu-

Page 8 of 69

HORIZON - 101092646 CloudSkin
29/12/2025 RIA

ously collected and structured within a JSON object. Then, a JSON exporter4 is deployed for export-
ing these application-related metrics into Prometheus-based NBC Monitoring stack with a scraping
interval.

2) QoS-aware Migration Policy: The autonomous strategies of the agent for application migra-
tion are described in detail in Table 2. The proposed data-connector requires the Data Engineer team
to enable the model inference and provide custom functions for sensors and actuators.

Table 2: Agent autonomous management strategy

Agent Analyzing and Planning Strategies

Data- Analyzing Strategy: QoS_predictions

connector | WHEN intervalTrigger (5min, QoS_prediction(data))
agent IF successful_call

THEN runWorkflow(prediction-pipeline, data)

Planning Strategy: migrate_app

apiRequest(/analyze_gos)

IF app_cluster == edge

AND current_cluster_app_gos > 200ms

THEN Call(NearbyOneActuator : migrate_service)
ELSE IF app_cluster == cloud

AND current_cluster_app_qos < 45ms

THEN Call(NearbyOneActuator : migrate_service)
ELSE THEN Nothing to do

3) QoS Prediction Model Inference: Model inference contains steps of data loading, QoS predic-
tion and data aggregation. The pipeline periodically predicts the VA QoS with a time window of 5
minutes.

* Data loading: This step queries multiple data sources via PromQL syntax to get the status of
the nodes and the VA application. Also, the results can be merged into a single DataFrame and
saved for the model to use.

* QoS prediction: Model inference is to use the pre-trained model for prediction. This step takes
the data loaded in the last time window, preprocesses the data and predicts the application QoS
in the edge and cloud using the pre-trained Informer model (for dataset 1) or Random Forest
model with time features (for dataset 2). The model is pretrained in Deliverable D5.3.

¢ Data Aggregation: After predicting the QoS for the next time window, this step aggregates the
predicted data by statistics such as max/average. The agent policy can see those analytics and
decide on their usage. In the Cellnex use case experiment, the max is used.

4) Data-connector Agent: To implement the agent towards Cellnex, custom functions of these
main components should be developed, i.e., sensor and actuator.

¢ Sensor: Sensor defines which data in the shared artifacts the agent should watch, and the policy
to decide if triggering the actuator. In our usecase, the sensor evaluates the predicted QoS data
and triggers the service migration based on QoS constraints (see Table 2)

* Actuator: Actuator is used to connect different platforms to execute migrations. In Cellnex CEC
environment, we use NearbyOne orchestrator to seamlessly migrate our application. Actuator
can provide the decision to the orchestrator using NearbyOne northbound interface API.

*https://github.com/prometheus- community/json_exporter

Page 9 of 69

https://github.com/prometheus-community/json_exporter

HORIZON - 101092646 CloudSkin
29/12/2025 RIA

2.3 Experiments, KPIs and benchmarks

This use case conducts several experiments to show the use case KPIs given in Table 3. All the demo
and experiments are running in testbed described in section 2.2. On the one side, we conducted an
experiment for VA application placement on our testbed to demonstrate application offloading and
performance KPIs, and on the other side, we used the testbed for QoS-aware service migration in a
real environment.

Table 3: Summary of use case-specific KPIs for Mobility.

ucKPI Description

ucKPI1:App QoS Proactive migration achieves slightly lower F1-score (86.8% vs 87.7%) but
higher precision (90.9% vs 87.7%), and reduces SLA violation time by 71%
(360s vs 1245.6s)

ucKPI2 Proactive migration ensures higher SLA compliance (98.75% vs 95.67%) with

(KPI12,KPI3,KPI13): slightly higher total daily cost (5.39€ vs 4.91€), but reduces SLA penalties and

Migration Application unnecessary migrations compared to Reactive, yielding better

Performance and Cost cost-effectiveness per SLA-compliant hour. When compared to Cloud-only
baseline, proactive reduces total daily deployment cost by 3x (5.39€ vs
15.97€).

ucKPI3 (KPI13): The dynamic DNS approach reduces propagation latency by 67% relative to

Migration DNS Latency External DNS.

Application placement on edge and cloud This very first experiment pursues the successful de-
ployment of a video analytics (VA) application on the edge and the cloud. In this experiment, we
deployed a VA application through NBC orchestration platform on CNX infrastructure, and we en-
abled fully offloading of the application from the cloud to the edge. The results and KPIs are shown
in the previous deliverable D2.3.

Intelligent application migration on edge and cloud This experiment consists of collecting edge
and cloud data towards learning multi-dimensional time-series for the future recommendations of
application migration in a dynamic environment. In this experiment, we explore VA applications and
use an ML model we trained in deliverable D5.3 to predict service QoS and trigger service migration
in a dynamic Cloud-Edge continuum. The results are shown in section 2.4.

2.4 Results

Before presenting the experimental results, we clarify the migration decision logic and the evaluation
metrics used throughout this section. A migration decision is triggered whenever the estimated ser-
vice latency exceeds a predefined Service Level Agreement (SLA) threshold. For reactive migration,
the decision is based on the observed service latency, whereas for proactive migration, the decision
is based on the predicted future service latency. Whether a migration was actually needed is de-
termined a posteriori using ground-truth future latency: a migration is considered necessary if the
future latency indeed violates the SLA.

Reactive vs. Proactive Migration Strategies Both migration strategies execute the same decision
pipeline at a fixed interval of 5 minutes, but differ in the information used to trigger a migration.
In the reactive approach, the system computes the average observed service latency over the last
5 minutes. This temporal averaging is applied to mitigate short-term instability and noise in the
application latency. If this averaged observed latency exceeds the SLA threshold, a migration is
triggered.

In contrast, the proactive approach initiates a prediction pipeline every 5 minutes. At each de-
cision point, the system fetches the most recent telemetry window, including historical latency and
multivariate resource metrics, preprocesses the data, and applies a trained machine learning model
to predict the service latency in the future 5-10 minute interval, for more details on the pipeline
stages or the models used, see Deliverable 5.3 Section 4.2. A migration is triggered if the maximum

Page 10 of 69

HORIZON - 101092646 CloudSkin
29/12/2025 RIA

predicted latency within this future horizon exceeds the SLA threshold. This allows the system to
anticipate upcoming SLA violations and migrate the service before degradation is observed.

Experiment 1: (1) Intelligent Service Migration Results for Dataset1 This experiment assesses the
impact of intelligent migration strategies. We compare proactive service migration, where migration
is driven by the service latency predicted by our Informer model if the max predicted service latency
is over than SLA, to the traditional reactive migration, which only responds if the observed service
latency is over than SLA.

Migration decisions are evaluated using a confusion-matrix-based formulation. A true positive
(TP) corresponds to a migration that was triggered and was indeed necessary (future latency vio-
lates the SLA), a false positive (FP) to an unnecessary migration, a false negative (FN) to a missed
migration where an SLA violation occurred without migration, and a true negative (TN) to correctly
not migrating when no violation occurred. From these quantities, we compute precision (fraction of
triggered migrations that were necessary), recall (fraction of necessary migrations that were correctly
triggered), and the F1-score, which balances precision and recall.

Table 4 shows the confusion metrics of reactive and proactive migration approaches. We observe
that the proactive approach achieves a much higher absolute amount of migrations (TP+FP), 2002
migrations against 925. Also, proactive migration performs a better migration detection by reducing
the number of missed migrations from 4900 to 3915.

Table 4: Confusion matrix for Reactive and Proactive approaches.

Approach | TP FP FN TN
Reactive 619 | 306 | 4900 | 23810
Proactive | 1604 | 398 | 3915 | 23718

Metrics Comparison Time Above SLA
801 3990
80 Reactive 4000 Reactive
Proactive Proactive
70 66.9 3500
W
60 £ 3000 2836
< E
E’ 50 < 2500
> 06 |5
3 o
2 40 ¢ 2000
2 3
T 30 291 < 1500
o [}
E
20 19.1 = 1000
11.2
10 500
0 — 0 - X
Precision Recall F1-Score Reactive Proactive

Figure 7: Reactive vs. Proactive Migration Strategies.

Figure 7 presents the comparison of using reactive and proactive migration strategies. The left
plot shows the Precision, Recall and FI-Score of two strategies. Specifically, proactive migration
achieves 13.9% better precision compared to reactive migration, indicating a high proportion of the
predicted migrations are actually necessary and fewer false alarms in the proactive strategy. Proac-
tive has 17.9% better recall than reactive, showing a stronger capacity to catch missed migrations.
F1-Score, which balances precision and recall, proactive migration outperform reactive migration for
23.5%. Proactive approach demonstrates better performance across those key metrics compared to
the reactive approach, meaning that proactive migration not only makes more accurate decisions but
also captures more missed migration cases, thus considered a more effective strategy. The right plot

Page 11 of 69

HORIZON - 101092646 CloudSkin
29/12/2025 RIA

shows the amount of time spent breaking the QoS constraints for each type of strategy. Under tested
workloads, the proactive method leads to lower QoS broken constraint time from 3990 minutes to
2836 minutes, reducing SLA violation time up to 28.9%. This means that a proactive strategy can
achieve better service quality and reduce the cost of the company from paying the SLA violations.

(2) Intelligent Service Migration Results for Dataset 2 This experiment evaluates reactive and
proactive migration strategies under the updated workload profile (i.e., Dataset 2), as described in
Deliverable D5.3, Section 4.2.2. The proactive strategy relies on a Random Forest predictor, selected as
the best-performing model in Deliverable D5.3, Section 4.2.4. Table 5 reports the confusion matrices
for both approaches. Compared to reactive migration, the proactive strategy triggers fewer total
migrations (497 vs. 546) and substantially reduces unnecessary migrations, lowering false positives
from 67 to 45. This reduction comes at the cost of a higher number of missed migrations (93 vs. 67),
trading sensitivity for selectivity.

Table 5: Confusion matrix for Reactive and Proactive approaches on Dataset 2.

Approach | TP | FP | FN | TN
Reactive 452 | 45 | 93 | 732
Proactive | 479 | 67 | 67 | 709

Metrics Comparison Time breaking SLA
124586
100 4 oo BN Froactive WEE Reactive 1200 |
87.7% 87.7% 86.8% 87.7%
82.9% -
80 £ 1000 A
c
Q
5 0
£ 60 -i-(”- 800 -
) 2
= o
c 2 6004
g . 2
: :
o400 -
£
20 =
200
0- 0-
Precision Recall F1-Score Proactive Reactive

Figure 8: Reactive vs. Proactive Migration Strategies in Dataset 2.

Figure 8 summarizes the performance comparison. The left plot reports precision, recall, and
Fl-score. Proactive migration achieves higher precision (90.9% vs. 87.7%), indicating more accurate
migration decisions with fewer false alarms, whereas reactive migration attains higher recall (87.7%
vs. 82.9%). Overall, both strategies obtain comparable F1-scores, with reactive slightly outperforming
proactive (87.7% vs. 86.8%).

Unlike Dataset 1, where the proactive strategy consistently outperformed the reactive baseline
across all metrics, Dataset 2 exposes the system to highly intensive workloads rather than the ex-
pected operational workload distribution. Under these extreme conditions, both strategies exhibit
similar detection performance, leading to a marginally higher Fl-score for the reactive approach.
However, the right plot from Figure 8 shows that when considering the total time spent violating SLA
constraints under realistic deployment conditions, proactive migration significantly outperforms re-
active migration, reducing SLA violation time from 1245.6 seconds to 360 seconds (a reduction of
approximately 71%). This demonstrates that, despite a small trade-off in recall under stress-test con-
ditions, proactive migration delivers substantially better SLA compliance in practice.

Beyond aggregate metrics, Figure 9 provides a time-resolved visualization of the same experi-
ment under an identical workload execution. The figure shows, for each strategy, both the migration
decisions taken over time and the resulting deployment location of the application (Cloud or Edge).

Page 12 of 69

HORIZON - 101092646 CloudSkin
29/12/2025 RIA

This qualitative comparison highlights how proactive migration anticipates upcoming SLA viola-
tions and relocates the service earlier, reducing the duration of time spent above the SLA threshold
compared to the reactive strategy, which only responds after violations are already observed.

Reactive Approach

—— Cloud
Edge
-== SLA
SLA breach
=+ Past 5-min QoS Mean

o I
IS o
.)

e
w
s

Realtime latency

o
[N}
T
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
|
1
1
1
1
1
|
T

o
h

Proactive Approach

—— Cloud
Edge
-=- SLA
Avoided SLA breach
=+ Predicted QoS Proactive

Realtime latency
o I o
w S~ w
| L L

o
IN)
|

o
B

09-18 23 09-19 00 09-19 01 09-19 02 09-19 03 09-19 04 09-19 05 09-19 06 09-19 07
Timestamp

Figure 9: Mobility use case demo comparing reactive and proactive migration under the same work-
load execution. The figure shows the migration decisions over time and the resulting service place-
ment (Cloud or Edge), illustrating how proactive migration anticipates SLA violations and reduces
the time spent above the SLA threshold compared to the reactive strategy.

Experiment 2: Real-time Service Migration and Cost Analysis We have run several full-day ex-
periments in the real environment to test the real-time service migration driven by our proactive
strategies, and we calculated the time breaking SLA and cost metrics.

We define the total operational cost of the service during a full day experiment as the sum of
infrastructure cost Cinra, SLA violation penalties Csp o and the cost of the migrations applied, shown
in Equation 1:

Ctotal = Cinfra + Cspa + Cmigrations (1)

Infrastructure Cost There are two types of infrastructures analyzed. The cloud: our baseline, utiliz-
ing only on-demand cloud services; and The hybrid infrastructure: utilizing on-demand cloud services
together with on-premise edge devices. Equation 2 details the infrastructure cost of our baseline,
while Equation 3 details the hybrid cost, respectively. Let 7cjouq and 7eqge be the respective cost rates
(€/s) for Cloud and Edge resources, and let Ccp be the cost of having a control plane set up on-
demand, shared by both approaches. The infrastructure costs are:

Cinfradoud = (tcloud + tedge + tidle) Tdloud + CCP (2)

Cinfrahybrid = tcloud "cloud T+ tedge redge + tidle 7’edge + CCP (3)

Where f.10u4, teage are the time spent in cloud and edge respectively while the t;4, is the time outside
those working hours, where the infrastructure still needs to be maintained. For our baseline, all the
time is spent in t.y;4.

Page 13 of 69

HORIZON - 101092646 CloudSkin
29/12/2025 RIA

Control Plane Cost Shared across all the experimented approaches, we utilize an instance with 2
vCPUs and 8GB of memory, as well as 100 GB of storage service, which costs $0.0736/hour [3] and
$0.088/GB-month respectively, summing up to a total monthly cost of 53,4¢€:

Ccp = $0.0736 - 24h - 30 days + $0.088 - 100 GB = $61.79 4)

Cloud Cost For reference, our Cloud has 16 CPUs, thus taking a 16 vCPU AWS EC2 instance costs
$0.688 /hour [3] (rcioua = 0.0001645€/s).

Edge Cost The Edge rate represents the cost of the electrical grid associated with operating the
Edge server. Using the experimental power traces, we compute the Edge cost by integrating the
measured power usage over time, as illustrated in Figure 10. Such high power figures are expected,
as our Edge node corresponds to an enterprise-grade server rather than a lightweight embedded
device. We consider it an Edge node within the context of our use case due to the computational
complexity of the deployed application, which could not feasibly run on traditional low-power edge
hardware. Furthermore, the Edge servers are supported by a solar panel installation located within
the Cellnex infrastructure, contributing to a reduction in the effective grid energy cost through the
use of renewable power.

Edge Power Usage

180 4
170 4

160 +

150 4 M

Watts

140 4

130 4

120 4 J

T T T T T T
09-18 23 09-19 00 09-19 01 09-19 02 09-19 03 09-19 04
Date

Figure 10: Edge Power usage trace across an 8-hour experiment workload.

We simplify by considering the average business energy price in Spain 0.137€/KWh [4]. The
trace from Figure 10 shows the energy usage during a full experiment (8 hours) corresponding to
(tedge + teioua), while the rest of the time, we will consider it to be idle t;4,.

SLA Breach Cost Different industry standards are applied for defining SLA breach costs. For in-
stance, Amazon splits the SLA breach impact in multiple ranges depending on the total percentage of
unmet availability [5]. However, for our real-time inference service, we have availabilty at all times,
and our SLA is based on latency thresholds, affecting the perceived QoS by the user, which has an
economic impact that grows with the severity of the violation. Following the cost modeling approach
introduced in [6], the impact of an SLA breach can be described by a penalty function P(g) that maps
the degree of QoS degradation (e.g., latency) to a monetary loss, as seen in Equation 5. The penalty
may follow different shapes depending on how sensitive the application is to QoS degradation, for
our real-time latency-sensitive use-case, defining a Penalty model P(q) that increases the penalty for
larger SLA violations g is key, as the user perceives a very different QoS for large violations compared

Page 14 of 69

HORIZON - 101092646 CloudSkin

29/12/2025 RIA
to small ones.

CSLA = /P(q(t))dt (5)

P(q) = Dt(eﬁ(‘i*'ism) —-1) (6)

Thus, in Equation 6 we define the penalty model as an exponential function in which the penalty
grows largely as the latency increases, where the parameters &« and p would be chosen by every
specific business use-case. Other options such as piecewise-linear models [6], with different slopes of
penalty for small or large violations could be used depending on the severity of the impact of larger
QoS (impact growth linear or exponential).

Exponential Penalty Function P(q) for SLA Breach

400 1 - gsia threshold !

350
300
250 A
200
150 ~

100

Penalty (arbitrary units)

50 4

T
0.1 0.2 0.3 0.4 0.5
Latency (s)

Figure 11: Exponential growth of the cost of SLA breach.

Figure 11 illustrates an example of the exponential penalty model P(g) proposed in Equation
6, showing the accelerated growth of penalty as latency increases beyond the SLA threshold. For
simplicity, parameters a and p are chosen to demonstrate the qualitative behavior of the model rather
than any specific business calibration.

Migration Cost Migrations between the Edge and the Cloud are not instantaneous nor entirely
seamless. As detailed in deliverable D5.3 Section 2.2.2, the current migration mechanism introduces
a minimal QoS impact, which is considered negligible for simplification. However, the migration
process itself requires a significant amount of time during which both Cloud-Edge resources remain
active simultaneously. This overlapping resource utilization represents an additional operational ex-
pense, which we define as the cost of migration, and is directly proportional to the migration duration
and the hourly rates of the resources involved.

Edge to Cloud. When migrating from the Edge to the Cloud, a delay is introduced due to the
initialization and booting of the Cloud instance. In our setup, this process lasts approximately three
minutes, during which both Edge and Cloud resources are running concurrently. The cost of this
transition is therefore computed as the combined cost of both systems for that duration:

Cg—c = 0.029584€ per migration.

Cloud to Edge. When migrating from the Cloud back to the Edge, the migration time is signifi-
cantly shorter (around 30 seconds), as the Edge infrastructure is already provisioned and ready to
receive workloads. During this time, both environments remain active, resulting in a smaller but still
measurable additional cost:

Cc—g = 0.000167€ per migration.

Page 15 of 69

HORIZON - 101092646 CloudSkin
29/12/2025 RIA

Approach Time Fulfilling SLA(%) Total(€) Control plane(€) Cloud(€) Edge(€)

Proactive 98.75 5.39 1.77 3.02 0.42
Reactive 95.67 491 1.77 2.62 0.42
Cloud only 99.68 15.97 1.77 14.20 0.00

Table 6: Daily cost comparison between evaluated approaches. Proactive costs are calculated with
the best model for our use case, Random Forest, but all models explored in deliverable D5.3 Section
4.2.4 have been tested. Total cost includes all except SLA breach cost, which is left generalized.

Table 6 summarizes the performance and cost comparison between the evaluated approaches.
Showing total costs which include infrastructure and migrations costs, while detailing each of the
instances cost. The proposed hybrid approaches (Random Forest and Reactive) significantly reduce
the overall deployment cost compared to the Cloud-only baseline, while maintaining a high percent-
age of time below the SLA threshold. Although the Reactive strategy achieves a slightly lower total
cost, this comes at the expense of a noticeable decrease in SLA compliance, highlighting the trade-off
between cost efficiency and QoS preservation.

Experiment 3: Dynamic DNS solution To evaluate how dynamic DNS updates support seamless
application mobility across the edge—cloud continuum, this experiment focuses on the requirements
emerging from the Mobility use case, where a Video Analytics (VA) service must be transparently
relocated between edge and cloud resources without disrupting client access. In this scenario, main-
taining uninterrupted service during application migration is essential: as the VA workload moves in
response to latency, load, or QoS triggers, clients must always resolve the service’s domain name to
its current execution site. The objective of the experiment is therefore to assess how tightly integrated,
orchestrator-driven DNS reconfiguration enables fast, consistent, and user-transparent redirection of
traffic compared to conventional cloud-based DNS mechanisms. Although the Mobility use case
involves migrating a deep-learning-based VA application, for experimental reproducibility and con-
trolled measurement we instead use a lightweight NGINX-based stateless service. This allows us
to emulate the application’s lifecycle operations while isolating the impact of DNS reconfiguration
itself.

To better investigate the benefits of our DNS-integrated orchestration approach, we implemented
a comparative baseline using the well-established External DNS with AWS Route53. In this baseline
setup, both the edge and cloud Kubernetes clusters run External DNS, which continuously monitors
Ingress resources and updates corresponding A records in Route53. When an application is migrated,
its Ingress object is recreated in the target cluster, triggering ExternalDNS to update the domain’s
DNS record to reflect the new service IP via Route53. In this configuration, ExternalDNS functions
as the DNS update agent, while the orchestrator remains responsible solely for managing applica-
tion deployments and migrations. This loose coupling leads to a more asynchronous update model
in which DNS changes rely on ExternalDNS’s polling intervals and reconciliation logic, potentially
resulting in delays or temporary inconsistencies after migrations.

By contrast, our solution integrates DNS updates directly into the orchestration workflow. This
tight coupling enables synchronous, atomic migration steps where DNS configuration is updated
immediately after deployment, ensuring that clients always resolve to the correct execution site. As
a result, the system minimizes propagation latency and avoids transient states with outdated DNS
records. To assess DNS reconfiguration latency during service migration, we developed a custom
parallel script that continuously performs DNS resolution requests for each application hostname.
Each query is sent once per second and targets the authoritative name server directly to avoid caching
effects. The script records the time at which each hostname first resolves to its updated IP address,
allowing us to measure the delay between migration initiation and DNS propagation. Service mi-
grations are triggered externally by invoking the NBI exposed by the NearbyOne orchestrator, sim-
ulating policy-driven control signals. To increase request frequency and study performance under

Page 16 of 69

HORIZON - 101092646 CloudSkin
29/12/2025 RIA

100 Approach
Dynamic DNS
ExternalDNS+Route53

DNS configuration time (seconds)

10 Apps 50 Apps 100 Apps
Number of migrated applications

Figure 12: Average DNS A record reconfiguration time after migrations

higher query loads, we additionally employ dnspyre, an open-source benchmarking tool capable of
generating large volumes of DNS queries per second. This dual approach provides both fine-grained
temporal visibility and stress-testing of the DNS subsystem.

Figure 12 shows the average DNS reconfiguration time and standard deviation observed during
the migration of 10, 50, and 100 applications, comparing our proposed dynamic DNS solution with
the baseline approach using External DNS and Route53. Reconfiguration time is defined as the delay
between triggering a migration and the first successful resolution of the updated A record. As the
number of migrated applications increases, dynamic DNS consistently maintains lower reconfigura-
tion times with significantly less variance. For example, at 100 applications, dynamic DNS achieves
an average delay of under 30 seconds, whereas the baseline exceeds 90 seconds with high variability.
These results highlight the scalability and determinism of tightly orchestrated DNS updates using a
local CoreDNS instance, in contrast to the asynchronous and eventually consistent behavior of Exter-
nalDNS with Route53. Beyond latency, operational costs associated with DNS management are also
relevant. Cloud DNS providers such as AWS charge per update and per query, which can become
significant in large-scale or highly dynamic scenarios. By leveraging a locally hosted DNS service,
our approach reduces reliance on external APIs and minimizes ongoing operational expenses.

2.5 Demos

Demo 1: QoS-driven dynamic migration of VA tasks between cloud and edge The demonstration
of dynamic migration of VA tasks between cloud and edge is divided into the following sections.

Section 1: Proactive migration of the application (Intelligent service migration) This section
demonstrates the proactive migration of the target application during a simple 30-min distribution
workload, triggering both Edge-Cloud and Cloud-Edge application migrations.

The recorded screen (see Figure 13) is divided into four quadrants to better understand the entire
workflow. The top-left quadrant contains a Grafana dashboard showing the workload evolution of
the DL Streamer application and its average latency, and the top-right quadrant shows the Argo UlI,
where Data Engineer pipelines are scheduled and run every 5 minutes. The bottom-right quadrant
displays the Scanflow Tracker (an MLflow instance) where the Learning Plane records the metrics
and parameters of each Data Engineer pipeline’s run, and the bottom-left quadrant presents a Linux
terminal printing the Scanflow Planner logs, where any request sent to the Scanflow QoS analysis
sensor and its logs are recorded.

The application’s migrations shown in the video go as follows: every 5 minutes a new Argo
Workflow is run, creating a new MLflow experiment run, retrieving the last 5-min historical data
of the application performance and latency stored in a Thanos service by means of the PromCSV
python library, and uploading the results as a CSV file to the Scanflow Tracker’s experiment run;
after that, the Prediction stage takes the CSV file and infers the latency values for the next 5 min-

Page 17 of 69

HORIZON - 101092646 CloudSkin

29/12/2025 RIA
@ atch-nference-proactve.gra AlLS
loud VM 1 + Edge server |; tae sBEnO
@
° S
CHl
k4
)
@ ouRATIH
=y 00000 . erocksss
2
<>
& i memory)@
==
Busvrsst ¥ =tocs 1 AsveNTs e
ml GitHub Docs
] cloudedge-proactive-migration-ci & rrovi Fossacs (2 m
X
n] +Newr

Figure 13: Mobility use case demo: Proactive migration of the application (Learning Plane).

utes, locally storing them into a temporal CSV file. The last stage, QoS upload, reads the temporal
CSV file generated by the Prediction stage and computes both the average and max latency value
from that file, uploads them alongside the cluster ID where the application is running, and triggers
the Scanflow Planner’s QoS analysis sensor. The Scanflow Planner then retrieves the latest values
uploaded to that experiment’s run, and if it finds out that the predicted latency value violates the
SLA defined for each cluster type (Edge or Cloud), then it proceeds to trigger the application mi-
gration by sending the required API requests to the Nearby One orchestrator. The Scanflow Planner
logs show how the application migration is progressing by showing the NearbyOne Service block
status, going from "OKTOSTATUS_PROCESSING" to "OKTOSTATUS_IN_SYNC" when completed.
This workflow applies to both Edge-to-Cloud and Cloud-to-Edge application migrations.

Section 2: Proactive migration of the application (Dynamic DNS resolution) This section demon-
strates the closed-loop workflow that migrates the cloud-native video analytics application between
Kubernetes clusters while preserving uninterrupted client access through dynamic DNS updates. At
the core of the architecture, the NearbyOne orchestrator manages services as modular Nearby Blocks
and performs deployments, migrations, and DNS updates. Dynamic DNS resolution is provided by
CoreDNS, configured via Helm and a ConfigMap containing A records that map the stable service
URL to the current ingress IP.

The recorded screen (see Figure 14) is divided into four quadrants to make the workflow visible.
The top-right quadrant shows the NearbyOne dashboard, where services are presented as Nearby
Blocks, including DL Streamer, a CoreDNS service on the Edge, and the Observability stack. The
bottom-left quadrant presents a Linux terminal organized around three DNS-related elements: the
CoreDNS ConfigMap with A records that map the service URL to IP endpoints, the CoreDNS pods,
and the Helm release controlling CoreDNS configuration. The top-left quadrant contains a Grafana
dashboard, and the bottom-right quadrant displays the Learning Plane.

Initially, DL Streamer runs on Cloud 1 and CoreDNS maps the service URL to the Cloud 1 ingress
IP (10.17.252.14). The Learning Plane then triggers a migration based on predicted latency, and the
orchestrator issues a create application request to deploy DL Streamer on the Edge cluster. The Near-

Page 18 of 69

HORIZON - 101092646 CloudSkin
29/12/2025 RIA

Services

loud VM 1 + Edge server

QObservee - Cloud 1 Observee - Edge

oud 2 AuditLogs A

Run Name

e 0o 0000

Figure 14: Mobility use case demo: Proactive migration of the application (Dynamic DNS resolution).

byOne dashboard shows the new DL Streamer instance being created on the Edge and, once deploy-
ment completes, the original Cloud 1 instance is terminated. During this handover, the CoreDNS
ConfigMap temporarily clears its A record list, removing the mapping to 10.17.252.14. CoreDNS
pods restart and the Helm release updates to propagate the DNS change coherently across compo-
nents. The ConfigMap then updates with a new A record that maps the service URL to the Edge
ingress IP (10.17.7.92). From this point forward, the service remains accessible via the same stable
URL, now resolving to the Edge endpoint, and the migration completes without any client-side con-
figuration changes.

Section 3: Reactive vs. Proactive migration comparison This section demonstrates the advantages
of the Proactive approach compared to the Reactive one.

The recorded plot (see Figure 9) is composed of 2 aligned subplots generated from the same 8-
hour workload distribution execution for each migration strategy, showing when the application has
been migrated from the Edge cluster to the Cloud cluster and the other way around, as well as when
a Proactive migration avoids an SLA breach that happened in the Reactive migration experiment.

3 Use case: Metabolomics
3.1 Overview

The METASPACE platform® integrates a deep learning-based service for recognizing off-sample mass
spectrometry images called 0ffSampleAI. As described in prior deliverables, the production-grade
OffSampleAl inference service leverages AWS ECS to perform image classification at scale. Although
this architecture provides elasticity, the 0ffSampleATI service experiences pronounced idle periods
due to highly variable, unpredictable workloads, as discussed in depth in deliverable D5.3.

The 0ffSampleAl service currently relies on a reactive feedback-control autoscaling strategy, where
AWS ECS continuously monitors running instances and adjusts their number based on metrics such
as average CPU utilization. In the current configuration, at least one instance is always kept active,
and when CPU usage exceeds 80%, the auto-scaler launches four additional container instances, up

Shttps://metaspace2020.org/

Page 19 of 69

https://metaspace2020.org/

HORIZON - 101092646 CloudSkin
29/12/2025 RIA

to a maximum of nine. Because scaling actions are triggered only after increased load is detected, the
system suffers from significant provisioning delays under highly variable workloads. This reactive
behavior results in unnecessarily long job completion times and further amplifies cost inefficiencies.
Consequently, the existing solution is not cost-efficient (Challenge CH1).

Very importantly, the current implementation lacks support for privacy-preserving processing of
sensitive images (Challenge CH2), underscoring another critical limitation of the existing approach.
Currently, sensitive images are processed on AWS ECS in plaintext, allowing AWS to potentially
access or infer information from the sensitive data.

To address these challenges, we developed Lithops Serve, a novel open-source inference system
that unifies serverless functions for cost-efficient processing (CH1) with confidential containers on
an on-premises edge cluster (CH2). Through a single Python API, Lithops Serve orchestrates both
types of resources: (1) cloud resources for non-sensitive images; and (2) edge resources for sensitive
images, thereby improving cost efficiency while enabling privacy-preserving inference for sensitive
data.

3.1.1 Business story

The 0ffSampleAT service for off-sample mass spectrometry image recognition historically faced highly
unpredictable demand, resulting in wasted cloud resources during idle periods and slow processing
during traffic spikes due to its always-on, reactive scaling solution built upon AWS ECS. Moreover,
the system lacked the ability to securely handle sensitive image data. To overcome these challenges,
we redesigned the service with Lithops Serve, using serverless functions for cost-efficient, elastic
scaling and confidential containers at the edge for privacy-preserving processing.

This novel CloudSkin solution eliminates idle infrastructure costs, accelerates response times
under fluctuating workloads, and enables privacy-preserving handling of sensitive data, yielding
both operational savings and expanded applicability for METASPACE cutting-edge research platform.

To highlight the impact of Lithops Serve and CloudSkin on this use case, consider the following
key results:

* Lithops Serve achieves job completion times two orders of magnitude lower than competitors
at equivalent cost, demonstrating both high performance and efficient, cost-aware scaling for
large-scale metabolomics workloads.

¢ The reconstructed images reveal minimal structural information across most setups, confirming
that high privacy is maintained while quantifying the trade-off between inference latency and
protected execution.

These numbers clearly demonstrate the improvements in efficiency, cost savings, and privacy-preserving
capabilities introduced by the project in this domain.

3.1.2 Why this use case needs the compute continuum?

The compute continuum is essential for this use case due to the dynamic and unpredictable nature of
the workload, where the dataset size in terms of number of images can vary +100 times as shown in
Fig. 15.

As discussed in D5.3, the service experiences fluctuating workloads throughout the day, with
periods of high activity followed by long idle times. The workload was analyzed to anticipate request
bursts and enable proactive scaling. Several powerful models were evaluated, including LSTMs and
Time Series Foundation Models; however, the workload proved to be highly spiky and erratic, as
illustrated in Fig. 16. Due to the lack of recurring patterns, proactive scaling is not feasible.

This high workload variability requires an online scaling solution that can, given the size of a job
in terms of requests, provision the optimal number of compute units to minimize job latency while
respecting a cost ceiling. This is not achievable with AWS ECS, which lacks support for cost-based
SLOs and does not allow explicit budget enforcement when provisioning extra instances. To address
this challenge, we leverage AWS Lambda to execute inferences at scale, augmented with mechanisms

Page 20 of 69

HORIZON - 101092646 CloudSkin

29/12/2025 RIA
o) Max: 155595
100000 | .
g
]
£
]
° 10000 F 4
@ []
E
= Q3: 3652.75
Median: 1811
1000 ¢ : Q1L: 782.0

Figure 15: Distribution of dataset sizes in terms of number of images in 2023.

350000

300000

250000

200000

150000

100000

50000

Number of Requests (2-hour bins)

0

01 05 09 13 17 21 25 29
Time

Figure 16: Workload during March 2024 using 2-hour bins.

to operate under strict cost constraints. Thanks to its rapid auto-scaling and inherent cost efficiency,
serverless functions form the backbone of Lithops Serve.

Unfortunately, commercial serverless cloud platforms such as Lambda do not currently support
confidential computing with Trusted Execution Environments (TEEs). To overcome this limitation,
this use case combines cost-efficient serverless cloud functions with on-premises edge resources. This
combination enables the following two capabilities:

¢ Cost-efficiency: Optimizes job latency while ensuring that the cost per request (CPR) remains
within the target CPR (Challenge CHI).

¢ Confidential execution: For datasets containing sensitive images, e.g., from private companies
such as AstraZeneca, the system leverages secure enclaves on the edge Kubernetes cluster to
perform image classification, keeping the data encrypted and confidential, even from the host
infrastructure (Challenge CH2).

3.2 Cloud-Edge continuum infrastructure for the metabolomics use case

3.2.1 CloudSkin platform

To address challenges CH1 and CH2, the metabolomics use case leverages multiple components of
the CloudSkin platform. At its core, Lithops Serve orchestrates serverless functions in the cloud to
provide cost-efficient, low-latency processing of non-sensitive images (CH1), while SCONE enables

Page 21 of 69

HORIZON - 101092646 CloudSkin
29/12/2025 RIA

privacy-preserving inference of sensitive images within confidential containers on on-premises edge
clusters (CH2). In both cases, the Learning Plane is used to perform intelligent, cost-driven resource
provisioning, ensuring that the number of compute units is dynamically adjusted to meet latency
and budget targets, as shown in Fig. 17.

Cloud amazon
S3

Lithops Serve
LeamingBlane 4. Fetch images in the batch

1. Al-based:provisioning
recommniendation - i
2. Provision AW$ Lambda function

Resource \\r\:/ serverless ExscutorgRg]

Provisioner _iriors executors
Batch g .
3. Fetch batch metadata

2. Provision confidential
(23 G010 (0] -

3 Fetch batch metadata

4. Fetch images in the batch

C ial container
Exicutor & PyTorch
Embeddiny

-C
K-N

C-Cell
K-NN

€

GEDS WebAssembly unit
Plugin: IBM GEDS

z

[0.35, 0.1,
Docker container ..., 0.75] C-Cell Free
| CPU
A 5. Store MINIO 6. Fetch N core
3 embeddings beddi
o Tiering 1o object st SCONE (TEE) I embeadings \ * ¢_cell runtime
Edge . Tiering to object storage

Figure 17: CloudSkin platform for the Metabolomics use case.

In addition, C-Cells are employed to perform K-NN similarity searches, allowing us to avoid fully
TEE-shielded inference while still maintaining privacy for the sensitive images. While performing
full inference entirely within the TEE is technically feasible, we observed that the latency overhead is
substantial, often exceeding 5x that of unprotected inference. To mitigate this, we adopted a partially
TEE-shielded approach: only the embedding or encoding phase of the model was run inside the
TEE, keeping the first layers of the model private. The resulting embeddings are then processed by
C-Cells executing an OpenMP job that can elastically scale-up to the number of available vCPU cores
to perform the “On-sample” or “Off-sample” binary classification via K-NN similarity search. By
elastically scaling up we can significantly improve image processing throughput while maintaining
confidentiality of the sensitive data, and utilizing cloud-edge resources efficiently.

Finally, GEDS-based WebAssembly Units were employed to preprocess sensitive images prior
to encryption and upload to object storage (MinlO). Dataset owners are expected to use a trusted,
local GEDS client to securely transfer sensitive images to the edge cluster, ensuring confidentiality
throughout the ingestion process.

3.2.2 Challenge CH1: Cost-efficiency with serverless cloud functions

To address Challenge CH1, we leveraged two key components of the CloudSkin platform: Lithops
Serve, configured to use exclusively AWS Lambda functions, and the Learning Plane, which enables
cost-driven resource provisioning. This corresponds to the top pathway illustrated in Fig. 17.

Integrated into the METASPACE platform, we expose a RESTful POST endpoint that is invoked by the
preceding stage of the annotation pipeline to enqueue a new inference job. Once a running inference
job completes, the Job Manager (the gray box in Fig. 17) pops the next job from the queue and initiates
its execution. Amonyg its responsibilities, the Job Manager monitors the progress and status of active
jobs, ® determines the required degree of parallelism expressed as the number of Lambda functions
to fulfill the target SLO by consulting the Learning Plane, and @ instructs the Resource Provisioner to
launch the corresponding number of Executors or workers for the job.

Page 22 of 69

HORIZON - 101092646 CloudSkin
29/12/2025 RIA

Each Executor runs in an isolated Lambda instance and processes its assigned batches sequentially.
For each batch, ® an Executor obtains the batch metadata from the Batch Manager in first place. This
metadata includes a unique batch identifier (UUID) and the Amazon S3 URIs of the input images
comprising the batch (e.g., s3://METASPACE/ JobXXX/myimage . jpg). The Batch Manager is responsible for
partitioning jobs into fixed-size batches, monitoring their execution, and reassigning failed batches to
other workers in order to guarantee exactly-once processing semantics. A dedicated Batch Manager
instance is instantiated for each inference job.

Upon receiving the batch metadata, @ each Executor downloads the corresponding images from
Amazon S3 in parallel and processes the batch. Once processing is complete, the Executor stores the
classification results back to S3 and notifies both the Batch Manager and the Job Manager of the batch
completion. This process continues until all batches have been processed.

Cost-driven resource provisioner. As described in D5.3, the Learning Plane was used to train two
regression models: one to predict the aggregated inference latency T (#,r), and the other to estimate
the total cost C(n,) required to process a job of r metabolomics images using n serverless executors.
Leveraging these predictions, we implemented a cost-driven resource provisioner that chooses the
optimal number of executors to minimize overall job completion time while remaining within a cost
budget.

More formally, given a batch job with 7 inference requests, the objective of the Learning Plane is
to choose the number of workers n that maximize performance under a predefined cost-per-request
(CPR) restriction. We adopted this cost-based SLO because the METASPACE DevOps team required us a
simple and intuitive metric to constrain the inference cost of each image classification. At the same
time, this SLO grants Lithops Serve the flexibility to scale out to the number of serverless executors
that minimizes job latency under a variable, per-job cost budget.

The result of this decision is the maximization of cost-effectiveness accompanied with cost SLO
compliance in a single serving system. Observe that T'(n,r) = Y_I' ; T;(r;), where T;(r;) is the latency
contributed by executor i in processing r; requests. Note that)/ ; ; = r. In these terms, the problem
can be formulated as follows:

miniy{nize T(n,r) ?)
subjectto C(n,r) <CPR-r 8)
n,7r € N, n < min (Nmax, E-D 9)

where the additional constraints are: (8) the monetary cost C(n,r) of the inference job remains
within the user-defined cost SLO; and (9) at least one worker is provisioned and their total number
does not exceed the minimum of the maximum concurrency limit (Nmax) set by the cloud provider
and the allocation of one batch per worker ([7]). The key point here is that optimization problem (7)
defines a compact search space, where the only parameter of interest is the number of workers. This
gives the Learning Plane the ability to make fast scaling decisions on the order of a few milliseconds.
Actually, the optimal number of executors, 7, is determined by performing a binary search over the
interval 1...min (Wmax, [7/b]) and evaluating the two regression functions, T(n,r) and C(n,r), as
defined in D5.3.

As shown in Algorithm 1, when the CPR is set to oo, the Learning Plane provisions the maximum
number of executors allowed by either the number of batches or the system concurrency—referred
to as “Latency-optimized”. Otherwise, it chooses the optimal number of executors that minimizes
job latency while remaining within the per-job cost budget, which we call “Cost-optimized”. Either
way, this approach enables efficient, cost-aware scaling of variable inference workloads by turning
predictive insights into actionable resource optimization.

3.2.3 Challenge CH2: Privacy-preserving inference on on-premises edge cluster

To address Challenge CH2, commercial FaaS platforms such as AWS Lambda currently lack support
for confidential computing with TEEs. As a result, we developed an alternative solution leveraging

Page 23 of 69

HORIZON - 101092646 CloudSkin
29/12/2025 RIA

Algorithm 1 Cost-Constrained Executor Selection

Require: Number of requests r, batch size b, maximum workers Npyax (1,000 concurrent function in
AWS Lambda)
Ensure: Optimal number of executors 71

1: Nmin < 1

2 Nmax <= min(Nmax, [}])

3: M < Nmin

4: while nyin < fmax do

5: n < L%J

6: T« T(n,r) {Predicted latency}
7. C < C(n,r) {Predicted cost}

8 if C < CPR-r then

9: 1 < n {Feasible solution}
10: Nmin < 1 + 1 {Try more parallelism}
11: else
12: Nmax < 1 — 1 {Reduce cost}
13: end if

14: end while
15: return 7

an on-premises edge cluster. As illustrated in the bottom pathway of Fig. 17, the solution involves
the following steps:

* @ A set of GEDS-based WebAssembly Units preprocesses sensitive images and uploads them
encrypted to the MinlO object storage deployment on the METASPACE on-premises edge cluster,
keeping confidentiality throughout the ingestion process.

¢ O Once preprocessing completes, the job is POSTed to the Lithops Serve REST endpoint in AWS,
together with URIs referencing the encrypted images stored in MinlO. Lithops Serve consults
the Learning Plane to compute the required level of parallelism under a “relaxed” latency SLO
and @ provisions the corresponding pool of confidential Executors. These executors run inside
Intel SGX enclaves via SCONE, guaranteeing end-to-end data confidentiality.

* ® Each confidential Executor iteratively retrieves the metadata for its assigned batches and @
downloads the corresponding encrypted images from MinlO for processing.

Instead of performing fully TEE-shielded inference, which is slow, each confidential Executor
generates embeddings by running only the first layers of the model inside the TEE. These layers
are chosen to prevent reconstruction of the original images, ensuring privacy while significantly
speeding up confidential image classification. ® Public embeddings are stored back to MinIO.

* @ Finally, the distributed C-Cells runtime watches MinlO for new embeddings and classifies
the associated images through a K-NN similarity search against representative “On-sample”
and “Off-sample” embeddings. This approach replaces the forward pass through the model’s
final layers, allowing classification without exposing them. The search is executed by an OpenMP-
based pool of parallel C-Cells that elastically adapts to available resources.

Confidential Executors provisioning. As mentioned in @, the allocation of confidential Executors is
guided by a relaxed latency SLO. Analogous to the serverless model presented in Section 3.2.2, the
job completion time here is a function of initialization and inference latencies for r requests across n
confidential executors. We define the model components as following:

e Initialization latency Lin;: The total time required to initialize n executors; this value increases
as the number of executors grows. This is commonly denoted as cold start latency.

Page 24 of 69

HORIZON - 101092646 CloudSkin
29/12/2025 RIA

¢ Batch latency Ly,n: The time required to process a batch by n executors; which decreases as
the number of executors grows

¢ Execution latency Lexec: The total time required to process all batches after initialization. This
can be derived from the batch latency model Ly,tn and the number of batches.

The first two components (Linit and Lpatcn) can be effectively modeled with polynomial fits. There-
fore, each model would be equivalent to:

Linit(11) = Poly gogree—s (1) = Bo + P11+ pan® + -+ + pan’, (10)
ibatCh(n) = PO]Ydegree:d(n) =70 + yin+ ’)’2”2 +---+ ’)/dndr (11)

where By, ..., B4 and 7, ...,y are the polynomial coefficients learned from the collected data.
We depict the results of the fitting in Fig. 18. The initialization latency fit achieves a coefficient of
determination of R? = 0.991, while the batch latency fit achieves R% = 0.976, demonstrating that the
polynomial models accurately capture the observed latency behavior.

Polynomial Regression Fit

—
65 e Measured data
= Polynomial Regression (degree=2)

T ™
® Measured Data 1
—— Polynomial Fit (degree=2)]

w
%)

60 -
A / 2,
g 55 / g ' \\
£ 50 Y 25
— 9]
E 45 /:p § \5\]
] $2.0 . 1
40 - a \4'\"3 1
[] 1.5 i
1 2 3 4 1 2 3 4
Number of Executors Number of Workers
(a) Init latency polynomial fit. (b) Batch latency polynomial fit.

Figure 18: Polynomial regression fits for initialization and batch latency.

Based on the batch latency, the execution latency is then:

o r .
Lexec(n/ 7’) = b : Lbatch(n)/ (12)

with 7 being the total number of requests (images) and b the batch size. The predicted job completion
time (JCT), T(n, 1), becomes a sum of initialization and execution latencies:

r 4
E : Lbatch(n) (13)

Given a job completion time SLO, S, and a number of input images r, the optimal number of
confidential executors can be found via linear search:

T(”r 1’) == tinit(”) + fJexec(n/ 1’) = iinit(n) +

1. Forn =1,2,..., Nmax, compute the predicted total latency T(n,r).
2. Select the smallest 1 such that T(n,7) < S.

3. If no n satisfies the SLO, select 7 = Nmax (being Nmax the maximum number of available execu-
tors in the on-premises cluster).

Page 25 of 69

HORIZON - 101092646 CloudSkin
29/12/2025 RIA

It is worth noting that the executor selection algorithm is agnostic to Nmax: stricter SLOs or larger
workloads simply increase the ceiling, and the system automatically chooses the optimal number of
executors to meet latency targets within the resource limitations.

This method guarantees that the workload is served within the SLO yet minimizing the number
of provisioned executors, ensuring cost-effectiveness and efficient resource utilization.

Performance-security trade-off. A powerful way to protect inference is using TEEs such as Intel
SGX or ARM TrustZone. TEEs provide hardware-isolated enclaves where code and data run shielded
from the rest of the system. When a model executes inside a TEE, both the model parameters and user
inputs remain confidential, even if the OS or hypervisor is compromised. This confidential computing
approach enables untrusted cloud and edge servers to perform inference on sensitive input without
exposing it to system administrators or attackers. That is, the sensitive metabolomics images can be
decrypted, processed entirely within the enclave, and only the final prediction is revealed. TEEs thus
offer a practical solution to the privacy challenges of ML-as-a-Service.

Algorithm 1 Ginver training in the white-box setting

1: function TRAIN(ng, F,AeTk)
2: /*fo, is the victim’s model”/
3 /*F is a set of intermediate features®/
4 /*A is the equilibrium coefficient in Equation 4%/
5: /*€ is the learning rate*/
6 /*T is the number of iterations®/
7 /*k is BatchSize*/
8 /*6¢g represent the parameter of G*/
9
10 initialize G, t « 0
11: while t < T do
12: Randomly sample fy, (x1), fg, (x2), ..., fg, (x%) from
?
13: L= 35 fou (G (fon (1)) = fon () 2
14 L=L+3 25, TV (G (fy, (x1))
— . oL
15: Gg = Bg — € * %
16: t=t+1
17: end while

18: return G
19: end function

Figure 19: Inversion model training.

However, this added security comes at a cost: executing a model inside a TEE typically incurs a
substantial latency overhead due to encryption and decryption operations, enclave context switches,
and constrained enclave memory. This performance penalty is further exacerbated when compared
to inference on hardware accelerators such as GPUs, where the gap between native execution and
TEE-based execution can be particularly large. Therefore, while TEEs provide strong confidentiality
guarantees, achieving an effective balance between privacy and performance remains a key challenge
for latency-sensitive and compute-intensive applications.

For this reason, we chose to execute only the initial layers of the modified RestNet50 model inside
the TEE, using them to encode sensitive images into vector embeddings. These embeddings can then
be treated as public representations, enabling efficient K-NN similarity search to identify the closest
matches and perform image classification without exposing the full model or the raw input data.

As with related approaches such as DarkneTZ [7], protecting only a subset of the model layers

Page 26 of 69

HORIZON - 101092646 CloudSkin
29/12/2025 RIA

ResNet50 Model Architecture

(=]
- - - -
£ S O | O | x O | O | 5 2 Qutput
3> o S|lo| ||| 8| 8|0 S £
®| (2 a o8| o8| m(8| m|8| _ o S5 o
o (] Al > (@ (4] > (@ [y > |0 > (0 O’.“:.'u-
ol |© ERlISlellisSlallis|e]| &2 z 8
3 o o o (3} =

|

Stage 1 Stage 2 Stage 3| Stage4 Stage5

Original

Stage 1 Stage 2 Stage 3

MSE: 0.0292 0.0432 0.0399
SSIM: 0.3285 0.1301 0.0587

Figure 20: Reconstruction attack feasibility vs. number of layers protected in the TEE.

introduces a fundamental trade-off between performance and security. Public representations, either
be exposed intermediate embeddings or unprotected model layers, may leak sufficient information
to enable partial reconstruction of sensitive metabolomics images. Executing fewer layers inside the
TEE improves inference latency but weakens confidentiality guarantees, whereas protecting more
layers strengthens privacy at the cost of higher execution overhead. Balancing this trade-off is thus a
central design challenge in privacy-preserving inference systems.

In particular, we evaluated the susceptibility of the modified ResNet-50 model to reconstruction
attacks under a white-box scenario, in which the adversary cannot directly access the internal model
parameters but can query the protected portions as needed to train an inversion model G [8]. More
specifically, we refactored each residual block of the ResNet-50 model into its constituent operations:
convolutions, batch normalization, ReLU activations, and skip connections, enabling the model to
be partitioned at arbitrary layer boundaries and supporting precise, systematic evaluation of both
shallow and deep reconstruction attacks. Then, for each chosen layer, we trained its corresponding
inversion model G following the same approach as in [8]. Pseudo-code for training the inversion
model is presented in Fig. 19.

To evaluate the effectiveness of reconstruction attacks, we used MSE (Mean Squared Error) and
SSIM (Structural Similarity Index Measure). More technically, MSE is defined as the average squared
difference between corresponding pixels of a ground-truth image X and a reconstructed image Y:

1 N
MSE(X,Y) = — Y (X; - Y;)?,
(X)) = 5 LX)
where N is the number of pixels in the image. SSIM compares local patterns of pixel intensities, taking
into account luminance, contrast, and structural information. In one common form, for images X, Y

with local means px, pty, variances (7)20 (712, and covariance oxy, SSIM is given by

(2uxpy + C1)(2oxy + C2)

SSIM(X,Y) = ,
X = e 1210 (F+ 02+ C)

Page 27 of 69

HORIZON - 101092646 CloudSkin
29/12/2025 RIA

0.47
0.49

-

SOOI

CoLooo:
[S2{eNele e 10N

Layer
Q
= OWUTRLNI = O LI = O AN —= O

N
©

ol

. layer4
adaptlve_concat_Poo1I

C
fc_2

SN T R T T T SN RN T SN TN N OO N ST O S U S RO S SO |

1 1 1 1

2 0.4 0.6 0.8 1
Normalized throughput

Figure 21: Reconstruction attack feasibility vs. number of layers protected in the TEE.

where Cq, C; are small stabilization constants. A higher SSIM (closer to 1) indicates more similar
structure.

Despite their simplicity, MSE and SSIM have limitations in modeling perceptual similarity. MSE
treats all pixel differences equally, so minor distortions that are visually insignificant can still produce
large MSE values. SSIM is more aligned with human perception than MSE, but it still relies on local
low-level statistics. In Fig. 20, we show how the reconstruction of images worsens as an increasingly
larger number of layers are placed inside the TEE. As illustrated in this figure, reconstructed images
derived from the Stage 3-vector embeddings reveal minimal information.

However, performance decreases as more layers are placed inside the TEE, as illustrated in Fig. 21,
which plots throughput, measured in vector embeddings per second, normalized to plain execution
outside the TEE. As illustrated, throughput drops to only ~ 15% of the unprotected execution rate.
Together with Fig. 20, this clearly outlines the inherent trade-off between performance and privacy.

For our prototype implementation, we generated vector embeddings at 1ayer2_2, as this
layer offers a well-balanced trade-off between performance efficiency and information
leakage.

3.24 Cloud-Edge hardware

The Lithops Serve orchestrator (Job Manager, Resource Provisioner, etc.) runs on an AWS EC2 t2.micro
instance (1 vCPU, 1 GB RAM). Executor instances are implemented as AWS Lambda functions, each
configured with 2 vCPUs and 3 GB of RAM. The Lambda configuration was optimized via Bayesian
optimization to maximize throughput per dollar. Input images and results are stored in AWS S3. The
same EC2 instance also hosts Prometheus, Pushgateway, and Grafana for monitoring and metrics
collection.

Confidential jobs are executed on a Kubernetes node hosted on a machine with 16 Intel SGX—enabled
cores (Intel® Xeon® Platinum 8458P) and 64 GiB of RAM. Input images, intermediate tensors, and
results are stored in a MinlO server running on the same machine as the Kubernetes node.

Page 28 of 69

HORIZON - 101092646 CloudSkin
29/12/2025 RIA

Table 7: Summary of use case-specific KPIs for metabolomics.

ucKPI Description

ucKPIl:Latency Curtail classification latency by a factor of 10 relative to the AWS ECS-based
METASPACE solution.

ucKPI2:Throughput Achieve a throughput (images/s) that is at least 10 times greater than the
existing AWS ECS solution.

ucKPI3:Performance/$ Achieve at least 2x the performance per dollar compared to the current ECS
implementation.

ucKPI4:Cost($) Ensure that the total cost of processing each dataset does not exceed 3x the
cost of the ECS implementation.

ucKPI5:55IM Average SSIM between original and reconstructed images lower than 0.2
indicates high privacy.

ucKPI6:Job completion > 95% of privacy-preserving jobs produce vector embeddings within a

time (JCT) for vector 10-minute JCT SLO.

embeddings

3.3 Experiments, KPIs, benchmarks and results

For benchmarking Lithops Serve, we used seven datasets. Each dataset is classified by size (small,
medium, large) and annotated with its approximate number of images in thousands, e.g., small.0.5k
(469 images), medium.8k (8,476 images), and large.30k (30,068 images).

KPIs. Table 7 lists the key KPIs for the metabolomics use case, targeting both efficiency and privacy.
ucKPI1:Latency, ucKPI2:Throughput, and ucKPI3:Performance/$ track operational performance:
classification latency should drop 10x versus the AWS ECS-based 0ffSampleAI baseline, throughput
should increase at least 10x, and performance per dollar should double. Furthermore, ucKPI4:Cost
($) ensures total processing remains under 3x the ECS cost, balancing speed and cost-effectiveness.

Privacy and reliability are captured by ucKPI5:SSIM, where values below 0.2 point out minimal
information leakage, and ucKPI6:Job Completion Time (JCT), which demands > 95% of privacy-
preserving jobs to produce vector embeddings within a 10-minute SLO. Together, these KPIs provide
a clear framework for evaluating privacy-aware performance in the metabolomics workflow.

Experiment 1: Lithops Serve against state-of-the-art inference systems (CH1). In this experiment,
we compare the performance of Lithops Serve against other state-of-the-art batch serving systems:

e AWS Batch: Configured using AWS Fargate containers (1 vCPU, 2 GB RAM). It employs an
autoscaling strategy based on queue length, mapping each batch to a separate job/container
(up to 100 concurrent instances).

* AWS ECS: Represents the baseline production solution used by METASPACE. It utilizes AWS
Fargate containers (2 vCPU, 4 GB RAM) with step scaling based on CPU utilization thresholds,
adding capacity when CPU usage exceeds 80%. It was configured to scale up to 50 containers.

e EMBL: The production deployment used by EMBL, functionally equivalent to ECS but limited
to a maximum of 9 containers.

¢ SageMaker AI: Evaluated on AWS EC2 ml.m5.1large instances (2 vCPUs, 4 GB RAM) using
asynchronous inference. Autoscaling is configured to double the number of instances if CPU
utilization exceeds 50% for one minute, and to scale down to zero when idle.

* Ray: running onAWS EC2 t3.medium nodes (2 vCPU, 4 GB RAM). It scales the worker pool
(by up to 100% per scaling event) based on task and actor logical resource requests rather than
application-level metrics.

Page 29 of 69

HORIZON - 101092646 CloudSkin
29/12/2025 RIA

Results. With Lithops Serve configured for a CPR SLO of $8 per million requests, it yields a latency
of approximately 50 seconds, i.e., 25 to 40 times faster than competing systems, while maintaining a
lower overall cost (ucKPI3:Performance/$). The only competitor with a lower cost was SageMaker,
but this came at the expense of significantly higher latency, demonstrating Lithops Serve as the most
cost-efficient option overall.

‘ ® |ithops Serve ® AWS Batch ECS e Sagemaker ® Ray|
1.5 : : T :
large
1.257¢ g
& 1 | 1
ol medium
w 0.75
@]
¥y
O 0.5 9large i P e large
0.25 medium \ e |
small mall | Mﬁrnall

0 | |
0 250 500 750 1000 1250 1500 1750 2000
Latency (s)

Figure 22: Experiment 1: Cost-optimized scaling against state-of-the-art

Fig. 23 focuses in the relation between latency and cost, showing that not only beats the previous
0ffSampleAl solution (EMBL), but also the rest. Results on two datasets highlight that the gains
are especially striking for larger jobs, achieving up to 70x faster execution versus the baseline, well
above the ucKPI1:Latency target of 10x. Similarly, ucKPI2:Throughput sees 70x improvement for
large.60k and 20x for medium.8k. Performance per dollar surpasses expectations, reaching 260 x
for large .60k and 700x for medium. 8k, far exceeding ucKPI3:Performance/$. Importantly, total cost
remains below the baseline, fully satisfying ucKPI4:Cost.

medium.8k large.60k
L By B L B Uy U1\ B R B B R L FT— N\ |
[@ CS m @-C5 B
0.5 5
12F EMBL
0.4] F
s | 210 :
% 03 B + [
Q [o} 3
S _ EM%L S 0s |]
2t] SageMak
I | i SageMaker b
1 : Mak ¢ 06T ®eray
R ageMaker . P
011 .thhops Serve ‘S € [alithops Serve
: 1 | 1 1 | 1 0.4 _QI- 1 1 1 i
250 500 750 1000 1250 1500 0 2000 4000 6000
Latency (s) Latency (s)
(a) Performance-cost medium.8k (b) Performance-cost large.35

Figure 23: Experiment 1: Performance-cost against state-of-the-art.

Experiment 2: Lithops Serve evaluation of cost-driven scaling (CH1). This experiment evaluates
the autoscaling capabilities of Lithops Serve under a cost-driven configuration using the large .35k
metabolomics dataset. The platform is optimized for a CPR of $7 per million requests. The goal is to

Page 30 of 69

HORIZON - 101092646
29/12/2025

CloudSkin
RIA

assess how quickly the system can scale out to meet computational demand and how efficiently it

utilizes CPU resources during initialization.

large.35k

Ray
SageMaker
EMBL
ECS
Batch

Lithops Serve

B Scale-out time
BN Job Latency |

10 100
Latency (s)

Figure 24: Experiment 2: Cost-driven autoscaling against state-of-the-art systems.

M |
1,000

2,000

B Original Latency
W Latency Lithops Serve

1,000

Latency (s)

100 4

10 -
EMBL ECS Batch SageMaker

Figure 25: Experiment 2: Latency under the same budget.

Ray

Results. Fig. 24 shows that Lithops Serve rapidly provisions resources compared with state-of-the-
art solutions. Table 8 quantifies these results, reporting both the scale-out time and the peak number
of virtual CPUs allocated. As shown in the figure, Lithops Serve achieves scale-out times of only 7.5s
(configuration Cost-optimized) and 11.2s (configuration Latency-optimized), while reaching peak

CPU counts of 104 and 1,980 respectively, far exceeding the capabilities of competing systems such
as AWS ECS, Ray, and SageMaker. This demonstrates both the speed and elasticity of Lithops Serve

for large-scale workloads.

Page 31 of 69

HORIZON - 101092646 CloudSkin
29/12/2025 RIA

Additionally, Fig. 25 evaluates the medium. 8k dataset by normalizing performance to the average
CPR of each competing system. The results reveal that Lithops Serve achieves latencies two orders of
magnitude lower than its competitors at equivalent cost levels. This highlights its efficiency not only
in absolute performance but also in cost-aware scaling, making it particularly suitable for large-scale,
cost-sensitive workloads in the metabolomics pipeline.

System Scale-out time (s) | Peak vCPU count
Ray 1,447 100
AWS SageMaker 997 32
EMBL 433 18
AWS ECS 1,244 46
AWS Batch 66.8 100
Lithops Serve (Cost-optimized) 7.5 104
Lithops Serve (Latency-optimized: CPR = o) 11.2 1,980

Table 8: Scale-out time and peak vCPU count for different systems.

Experiment 3: Performance of GEDS-based WebAssembly Units for preprocessing images (CH2).
This experiment measures the I/O performance of GEDS WebAssembly (Wasm) Units using a Rust
application compiled to Wasm for image preprocessing. Originally, the Rust program read images
from local storage, rescaled and normalized them, and wrote the outputs back to disk. In our setup,
the write operations are replaced by GEDS Wasm Units, which transparently perform in-place image
transformations, apply AES encryption, and tier encrypted images to MinlO.

To characterize I/ O behavior under load, multiple GEDS Wasm Units (ranging from 10 to 100) are
collocated on a single node. Each GEDS Wasm Unit processes a fixed number of images, leading to
a total processed dataset size of 2.9 GB, 7.2 GB, 14.3 GB, and 29.7 GB for 10, 25, 50, and 100 modules,
respectively. We measure disk write and network upload throughput during execution.

—
[6)]
o

SN Disk 1/0 write Sl Network upload

—h
o
o

o
o

Average throughput (MB/s)
o

10 25 50 100
Number of concurrent GEDS-based Wasm units

Figure 26: Experiment 3: Performance of GEDS-based WebAssembly Units for preprocessing images.

Results. Fig. 26 plots the results. Initially, all GEDS Wasm Units read their input images from disk,
causing a small disk read spike. As GEDS Wasm Units complete pre-processing, output is written to
GEDS Tier 0, producing disk write spikes, and subsequently offloaded to MinlO as needed, resulting
in increased network throughput. Even collocated in the same physical machine (8 CPU cores), 50
GEDS Wasm Units are able to achieve an average throughput of 122 MB/s for disk writes and of 112
MB/s for network uploads.

The experiment highlights that increasing the number of concurrent units leads to higher total
throughput but also longer processing times due to contention for CPU and I/O resources. These

Page 32 of 69

HORIZON - 101092646 CloudSkin
29/12/2025 RIA

results demonstrate the scalability and efficiency of GEDS Wasm Units in managing ephemeral, high-
throughput data transformations while transparently integrating storage tiering and encryption.

Experiment 4: Evaluation of image reconstruction privacy and latency (CH2). This test assesses
the trade-off between latency and reconstruction privacy when generating vector embeddings within
a confidential Executor provisioned using SCONE. Two key metrics are analyzed: Median MSE and
Median SSIM between original and reconstructed images. The confidential Executor ensures that
embedding generation is performed in a secure, isolated environment, providing strong protection
for both the model and the input data while allowing measurement of performance impacts.

I [05F @convl
layerd'lg oo
0.10 4
lay(a4‘0 04l
& 0.08 | layer3’ /l?yer3?;f12 = o
S —layer w037
= 0.06 layerS'(ﬂayerB'l Y i n
.§ layer?l‘layer?? g
s layerl'l . g o2r
= 0l Y 'layer2 0 S
Playerl'o =
maxpoo [relul ¢ q
002 ’elul] 01 maxpool layerl'l layer2'0 layer3'2 1506:3°3
convl * ® ?/ er2’1 | 30/ layerd 4
000 L ‘ ‘ ‘ ‘ ‘ 00f layerl'0 fé;eﬂ 1ay!§' L 1lay@®q]
) 0 2 4 6 8 10 0 2 4 6 8 10
Inference Latency (ms) Inference Latency (ms)
(a) Median MSE of reconstruction attacks vs. number of (b) Median SSIM of reconstruction attacks vs. number of
layers protected in the TEE. layers protected in the TEE.

Figure 27: Experiment 4: Reconstruction attack feasibility as a function of the number of layers pro-
tected inside the TEE.

Results. Fig. 27a plots the Median MSE (y-axis) against inference latency (x-axis) for different stages
of embeddings. Non-surprisingly, placing more layers within the confidential Executor reduces the
fidelity of reconstructed images reflected by higher MSE, while simultaneously increasing the latency
required to generate vector embeddings at those layers.

Fig. 27b shows the Median SSIM (y-axis) against inference latency (x-axis). SSIM values remain
below the ucKPI5:SSIM target of 0.2, confirming that the reconstruction reveals minimal structural
information and that high privacy is maintained across all evaluated configurations. As depicted in
the figure, while performance decreases with higher TEE protection, the system effectively enforces
privacy-preserving constraints, signaling the inherent trade-off between performance and privacy.

Altogether, the results demonstrate that the system meets the privacy KPI (ucKPI5:SSIM) while
providing a quantifiable understanding of latency impacts due to TEE-protected processing.

Experiment 5: Job Completion Time under SLO Constraints (CH2). This experiment assesses the
performance of Lithops Serve using the 2,740 jobs executed by the METASPACE 0ffSampleAI service
in February 2024. The system is configured with a job completion time (JCT) SLO of 600s to evaluate
the effectiveness of the latency model in Eq. (13) at dynamically provisioning the appropriate number
of confidential Executors based on job size, while minimizing SLO violations.

Results. As illustrated in Fig. 28, the system achieves a 97.08% SLO compliance rate, with the vast
majority of jobs completing well below the 600s threshold. Although a small number of outliers are
observed, some exceeding 4,000s, the dense concentration of jobs near the baseline demonstrates that
the provisioning model consistently allocates the right number of confidential Executors. Overall,
these results confirm the effectiveness in sustaining SLO compliance at scale (ucKPI6:Job completion
time (JCT) for vector embeddings).

Experiment 6: Elastic C-Cell Scaling (CH2). In this experiment, we measure the performance of
the last step of the pipeline, the OpenMP job that performs K-NN image similarity search with a pool

Page 33 of 69

HORIZON - 101092646 CloudSkin

29/12/2025 RIA
. - ® Within SLO
5000 ® Violation
° -== SLO = 600 sec
4000 LA
= o
§ 3000 °s
(0]
9
5 2000

1000

0 500 1000 1500 2000 2500
Job Index

Figure 28: Experiment 5: SLO violations.

of C-Cells that can elastically scale up, or down, as requested by the control-plane. This experiment
takes as an input a set of embeddings, pre-processed in an SGX enclave, and a set of images populated
in MinlO storage. The goal is to perform a K-NN similarity search using a Rust program on each
image in the dataset.

To achieve our goal, we implement an OpenMP application that orchestrates a dynamically-sized
pool of C-Cells, where each C-Cell performs a K-NN search on one image. The OpenMP job leverages
the elastic scaling feature of OpenMP jobs from WP4 in order to allocate more (or less) C-Cells to the
running computation. This decision is made dynamically at runtime and does not require restarting
the job. To emulate the situation where multiple of this pipelines are running in parallel, we first start
two concurrent jobs (that we do not plot) that occupy CPU resources. Then, as resources free-up, the
elastic OpenMP job automatically scales-up.

2.00
500 IPS
50 -
1.75
X 40 L 1.50
S P
= 1.255
N =]
< 30 300 IPS <
S A
=) V[\"Ad]
a e
e 075 S
@ 20 L 0.
g #
(V)
z L 0.50
10 100 IPS
L 0.25
0 L 0.00
20 N 0 Q© A0 29
N\ - N o 0 0
60 160 o0 \6° \6° 160
Time

Figure 29: Experiment 6: Image processing throughput as we elastically scale-up to harvest idle
vCPU cores. We label the peak throughput achieved in each phase in images-per-second (IPS).

Results. Fig. 29 summarizes our results. We plot with a red overlay the number of concurrent K-NN
jobs. As jobs finish, and their CPU resources become available, the K-NN classification job scales-up,

Page 34 of 69

HORIZON - 101092646 CloudSkin
29/12/2025 RIA

as evidenced by the higher CPU utilization. We also overlay the throughput, in terms of images-per-
second (IPS), achieved at each stage. Adding extra vCPU resources, i.e., threads to the OpenMP jobs,
enables an improvement in throughput from 100 IPS to a peak 500 IPS. This illustrates the benefits
of beginning processing as soon as any resources are available, and then elastically scaling up as the
opportunities arise.

3.4 Demos

Demo 1: Cost-driven model serving with serverless functions. This demo showcases telemetry
and monitoring capabilities for cost-optimized model serving using Lithops Serve deployed on AWS
Lambda, addressing Challenge CH1.

Five dashboards have been implemented, each providing observability at a different level, from
inference-specific metrics to detailed system performance.

The demo runs two jobs: one processing 2,000 images with a cost per million requests (CPR) set
to $8, and another processing 15,000 images with CPR set to $6. The different CPR values showcase
how cost can be adjusted according to the client requirements. The Lithops Serve API accepts the
AWS credentials to download images from object storage (Amazon S3), along with a target CPR value,
batch size (b = 32 images), and output location for saving results back to object storage. During job
execution, the dashboards display real-time progress as well as time-lapse visualizations, providing
a comprehensive view of system behavior and performance.

Inference Dashboard. The Inference Dashboard is dedicated to monitoring inference workloads
and is composed of four main components. First, an execution summary reports the total number of
requests, the configured batch size, and the number of active executors, as shown in Fig. 30.

AWS Lambda

32

Figure 30: Inference dashboard execution summary for Lithops Serve on AWS Lambda.

Second, the batch assignment timeline visualizes how batches are distributed over time across
executors, enabling the analysis of scheduling behavior and load balancing (Fig. 31).

Figure 31: Inference Dashboard: batch assignment timeline.

Third, the dashboard exposes real-time inference metrics, including completed number of batches,
running time, throughput, average batch latency, average number of batches and requests processed
per executor, total execution cost, and throughput per dollar, as illustrated in Fig. 32.

Finally, progress and distribution metrics are presented as bar charts showing the number of
batches processed by each executor, batch-level latency, and executor running time (Fig. 33).
General Dashboard. The General Dashboard provides a high-level summary of each job execution,
including execution time, number of workers and processes, CPU utilization, user and system time,
memory consumption, and network usage, as shown in Fig. 34.

Page 35 of 69

HORIZON - 101092646 CloudSkin
29/12/2025 RIA

12.85

$0.0286

Figure 32: Inference Dashboard: real-time metrics.

AT AT

Figure 33: Inference Dashboard: executor progress and performance.

Figure 34: General Dashboard: job summary.

General Performance Dashboard. The General Performance Dashboard presents an aggregated
view of system-wide performance across all workloads, highlighting CPU usage, disk I/O, memory
consumption, and network activity (Fig. 35).

Page 36 of 69

HORIZON - 101092646 CloudSkin
29/12/2025 RIA

Figure 35: General Performance Dashboard: system-wide metrics.

Job Detailed Dashboard. The Job Detailed Dashboard offers a fine-grained view of resource
utilization for individual jobs, enabling deeper analysis of CPU, disk, memory, and network behavior
on a per-job basis, as illustrated in Fig. 36.

Figure 36: Job Detailed Dashboard: per-job metrics.

Executor Detailed Dashboard. The Executor Detailed Dashboard aggregates resource usage and
performance metrics at the Executor level, allowing comparison of CPU, disk, memory, and network

Page 37 of 69

CloudSkin
RIA

HORIZON - 101092646
29/12/2025

utilization across executors, as shown in Fig. 37.

Figure 37: Executor Detailed Dashboard: aggregated metrics.

Demo 2: Confidential Batch Serving In the same direction as the previous demo, this demo aims
to evaluate system behavior under concurrent execution of two confidential jobs. The small.2k and
medium.8k datasets are used, both subject to a latency SLO of 600 seconds. We observe that this SLO
has been set less restrictively in this case due to the lack of elastic CPU capacity available in cloud-
based serverless platforms. Consequently, the maximum number of confidential Executors has been
limited by the available local Kubernetes resources: a practical limit of Nmax = 4 executors. We note
that a pool of four executors was sufficient to meet the JCT SLO of 600 seconds, resulting in less than

5% of jobs exceeding it.

(a) Overview (b) Metrics

Batch Assignment Timeline (by Task Manager ID)

001 Startup Sye 811 2233 4 556 677 8800111 11 1 111 11 11 118

1 501 22 334 4 5666 7 888 11111 11 11 1 111 1 118

2 1112 333 45 566 77 89 81 1111 111 1111 11 1118

3 71 122 3344 55 677 889 6111 1 11 1 11 111 1 1

3:48:30 3:49:00 3:49:30

(c) Batch assignment timeline

Figure 38: Inference dashboard for Lithops Serve with confidentiality.

Page 38 of 69

HORIZON - 101092646 CloudSkin
29/12/2025 RIA

Images are preprocessed using GEDS-based WebAssembly units and stored in encrypted form in
MinlIO. During the demo, the transformed image are retrieved and inference is executed up to layer
2_2 to produce the vector embeddings for the K-NN classifier; after each batch, the resulting vector
embeddings are written back to MinIO.

The Inference Dashboard shows the same metrics as in the first demo, now featuring Kubernetes
with SCONE as the execution backend (Fig. 38).

4 Use case: Surgery

The National Center for Tumor Diseases (NCT) in Germany combines data scientists and surgeons
to apply advanced analytics to surgery-related multimedia. Their primary requirement is to ingest
video streams from endoscopic cameras reliably and perform real-time Al inference to assist surgeons
during procedures. These video streams must also be durably stored for later batch analytics, such as
Al model training. This use case is highly latency-sensitive, as delays in video analytics can directly
impact surgical decision-making.

To address NCT’s needs, in D2.3 we reported a Proof of Concept (PoC) that enables real-time
Al video inference over streaming data. The PoC integrates Pravega [9, 10] as the backbone for
durable and elastic video stream storage, combined with GStreamer [11, 12] for video ingestion and
pipeline management. Containerized Al inference models run on top of this stack to process frames
in real time, while Kubernetes orchestrates containerized services across the Cloud-Edge continuum.
The system also includes telemetry and metrics collection via Prometheus and visualization through
Grafana, enabling monitoring and operational insights. This architecture provides a robust founda-
tion for real-time video analytics in latency-sensitive environments.

Next, we provide an extensive description of the advanced NCT-related challenges we addressed
in CloudSkin for the second half of the project.

4.1 Overview

Work at the NCT aims to provide surgeons with Al-assisted video inference to improve the quality
and safety of surgical procedures. In this project, NCT has contributed AI models to identify instru-
ments, detect surgical phases, and perform liver segmentation tasks while operating. Video streams
collected from endoscopic cameras must be processed at high frame rates (> 30 FPS) and stored
durably for later batch analytics and Al model training. In D2.3, we demonstrated via a PoC that
achieving real-time Al video inference on a streaming data platform is a feasible approach.
However, with the initial PoC developed, more advanced requirements came into play. In par-
ticular, an overarching challenge for a surgical Al video platform is resource optimization across the
compute continuum—from surgical edge nodes to central cloud facilities—while ensuring flexible
Cloud-Edge data management. This challenge manifests in three key technical challenges:

¢ Inefficient CPU and GPU Allocation for AI Models (CH1): Surgical AI models (instrument
detection, phase recognition, liver segmentation) exhibit heterogeneous resource demands that
need to be concurrently executed on a limited Edge infrastructure. We empirically found that
naive CPU & GPU packing or aggressive time-slicing degrades frame rates, especially for seg-
mentation tasks. Intelligent allocation strategies—based on profiling and bin-packing heuris-
tics—are needed to maximize GPU utilization without violating latency Service Level Objec-
tives (SLOs) in terms of FPS. This involves solving multi-dimensional resource allocation prob-
lems considering CPU cores, GPU memory, and model-specific constraints.

* Need for Latency-aware Auto-Scaling of Streaming Storage (CH2): We observed that NCT
surgery room utilization exhibits strong daily patterns, with workloads fluctuating significantly
between peak and off-peak hours. This variability requires dynamically adapting the underly-
ing streaming storage infrastructure to match demand. However, scaling up or down the num-
ber of segment store instances in a streaming service like Pravega introduces latency spikes
during reconfiguration, which is highly undesirable for real-time video analytics where stable

Page 39 of 69

HORIZON - 101092646 CloudSkin
29/12/2025 RIA

ingestion and inference are critical. The core challenge lies in how to auto-scale the streaming
storage infrastructure while minimizing the latency impact caused by instance scaling events.

e Lack of Advanced Cloud-Edge Data Management (CH3): Video data ingested in real time
at the Edge must eventually be moved to long-term storage in the Core/Cloud for batch an-
alytics and Al training. Current streaming storage systems like Pravega simply offload video
streams as large, opaque data objects, without exploiting the data path for additional value.
This lack of programmability means missing opportunities for in-transit data management.
The challenge is to design a new programmability model for data flowing from Edge to Cloud
that allows users to deploy custom functions across the continuum. These functions should
transparently add value, for example by implementing buffering strategies during connectiv-
ity issues or running Al models to annotate video chunks with surgical phases and instrument
metadata, enabling smarter storage and faster retrieval for downstream analytics.

4.1.1 Business story

At the NCT, surgical precision and patient safety depends on uninterrupted Al-assisted video analyt-
ics. In the future, it is expected that surgeons, or CAS systems which surgeons may use, will depend
on real-time inference from endoscopic video streams to, among other things, identify instruments,
detect surgical phases, and guide critical decisions during procedures. Any latency spike or resource
bottleneck can compromise this process, making infrastructure reliability and efficiency paramount.

However, hospitals face mounting complexity and cost in managing heterogeneous compute re-
sources across operating rooms and central IT facilities. Workload patterns fluctuate significantly
throughout the day, requiring dynamic adaptation of streaming storage and compute resources. At
the same time, video data must be durably stored and enriched for downstream analytics and Al
training, without disrupting real-time operations.

CloudSkin transforms this reality by introducing intelligent resource allocation, predictive stream-
ing elasticity, and programmable data flows across the compute continuum. For NCT, this means:

¢ Maximizing utilization of scarce edge resources (CH1): Smart GPU allocation enables concur-
rent execution of heterogeneous Al models without over-provisioning hardware. This allows
NCT to support more surgeries simultaneously, reducing idle capacity and operational costs.

* Consistent real-time performance under dynamic workloads (CH2): Predictive auto-scaling
mitigates disruptive latency spikes during storage reconfigurations, ensuring stable ingestion
and inference even during peak surgical hours. Surgeons gain confidence that Al insights re-
main timely and reliable.

¢ Data managed as it moves, not after (CH3): Programmable data management turns the data
path into a value-added pipeline. Deploying data management functions like storage buffering
to mask network disruptions or Al-powered annotation for tagging video data objects acceler-
ates innovation and adds value to the flow of streaming data across the Cloud-Edge continuum.

By solving these challenges, CloudSkin positions NCT at the forefront of surgical Al, delivering
a platform that not only meets clinical demands but also drives research excellence and efficiency.

4.1.2 Why this use case needs the compute continuum?

The NCT surgical workflow spans both Edge and Cloud, and its requirements cannot be met by
isolated infrastructures:

¢ Edge: Real-time Al inference on surgical video streams demands ultra-low latency and guar-
anteed throughput. This requires efficient GPU allocation (CH1) and elastic streaming storage
(CH2) to handle fluctuating workloads without compromising frame rates. Predictive scaling
ensures stable ingestion even during peak operating room activity, avoiding disruptive latency
spikes that could impact surgical decisions.

Page 40 of 69

HORIZON - 101092646 CloudSkin
29/12/2025 RIA

¢ Cloud: During a surgery, large volumes of video data must be offloaded to central IT facilities
for batch analytics and Al model training. Advanced data management (CH3) ensures seamless
movement of data across heterogeneous infrastructures, while adding value through buffering
to mask network disruptions and Al-powered annotation pipelines that enrich video content
for faster retrieval and research.

Without a compute continuum, hospitals would face two undesirable extremes: over-provisioning
Edge resources (leading to high costs and inefficiency) or suffering performance degradation during
peak workloads. The continuum enables dynamic orchestration of compute and storage resources,
combined with policy-driven data flows, delivering both cost-efficiency and reliability. For NCT, this
means uninterrupted real-time analytics during surgery and accelerated innovation in surgiomics
through enriched, readily available datasets.

4.2 Cloud-Edge continuum infrastructure for the surgery use case
421 CloudSkin platform

The CloudSkin platform provides an integrated architecture to support real-time surgical video ana-
lytics across the compute continuum, combining Edge resources in operating rooms with centralized
IT infrastructure for long-term storage and batch analytics. Its design addresses three critical chal-
lenges in the NCT scenario: GPU allocation for Al models, predictive streaming storage auto-scaling,
and advanced Cloud-Edge data management (see Fig. 39).

o —————————— e ————————————————————— e

Y, N . RN -~
e Operating Room (EdQE) c2 ! Streaming rage Aut g " c3 Programmable Stream Data Management N
/ Dynamically adapt streaming storage resources \ =/ User-defined functions for managing continuous '\
/ . e - ‘ while minimizing tail latency for Al video inference \ !

storage and retrieval of surgical Al stream data

|1
1l
1
1l
1
1l
Il
1

Elastic Streaming ﬁ ﬁ In-transit Al-powered
Storage System ﬁ ﬁ

—_—
Stream data | data management |

‘ tiering/oﬁloadiné ing,
embeg:it:gr:;;regration, @ @ @ ﬁ ﬁﬁ
object tagging, etc.

Long-term video
data storage

(J
T

(recent data only)

|
|
|
Video data storage I
|
|
|

\
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
T |
|

|
|
|
|
|
|
|
|
|
|
|
\

¢1 Smart Allocation of Al Models across GPUs Real-time streaming video ingestion High-throughput batch analytics
\ Maximize GPU capacity of potentially limited Edge and inference (e.g., <50ms) // \ /
\ i ies. \ /
N clusters supporting concurrent surgeries. /// Ny IT Center (CorelCIoud) v
—

——— e e N —— e —

felm

Edge Hardware

Core Hardware

Figure 39: CloudSkin platform for the NCT use case.

At the edge, CloudSkin orchestrates Al inference pipelines for surgical video streams under strict
latency constraints (e.g., < 50 ms per frame). The platform leverages Kubernetes-based orchestration
to deploy NCT Al models for instrument detection, phase recognition, and segmentation. To maxi-
mize GPU utilization in resource-constrained surgical clusters, CloudSkin implements smart alloca-
tion of Al Models across GPUs (CH1). This involves profiling model resource demands and applying
placement strategies to optimize GPU sharing without violating frame-rate SLOs (e.g., > 30 FPS). Our
experiments show that naive time-slicing degrades performance for heavy models like segmentation,
while intelligent allocation policies maintain throughput and reduce idle GPU capacity.

Video streams ingested from surgical cameras are stored in Pravega, a tiered streaming storage
system integrated into CloudSkin. Pravega ensures low-latency writes and durable retention by com-
bining a write-ahead log with long-term object storage. To prevent latency spikes during workload
fluctuations exhibited by NCT surgery room usage patterns, CloudSkin introduces predictive stream-
ing storage auto-scaling (CH2) using Long Short-Term Memory (LSTM)-based forecasting. LSTM is a

Page 41 of 69

HORIZON - 101092646 CloudSkin
29/12/2025 RIA

popular type of recurrent neural network (RNN) architecture, designed to learn and retain long-term
dependencies in sequential data. This mechanism anticipates and predicts operating room utilization
patterns and proactively adjusts segment store instances, reducing disruptive scaling events and im-
proving tail latency—the high-percentile response times (e.g., 95th or 99th percentile) that represent
the slowest requests impacting user experience. This is critical for real-time Al video inference.

Beyond real-time analytics, CloudSkin enables programmable stream data management (CH3)
for continuous storage and retrieval of surgical multimedia. The CloudSkin platform intercepts tiered
storage operations and executes user-defined data management functions across the Cloud-Edge
continuum. For example, during storage outages, buffering streamlets—data management functions
executed on a chunk of tiered data—maintain uninterrupted ingestion, while annotation streamlets
tag video chunks with surgical phases and instrument metadata for efficient retrieval. These oper-
ations occur transparently across Edge and Cloud infrastructures, adding value to the flow of data.
Long-term video data is stored in object storage at the IT center, enabling high-throughput batch
analytics and Al model training.

In summary, CloudSkin unifies elastic compute, predictive scaling, and programmable data flows
to deliver a robust platform for latency-sensitive, Al-driven surgical workflows. It ensures that oper-
ating rooms benefit from real-time intelligence while central facilities handle long-term video storage
and batch analytics, all under a cohesive Cloud-Edge architecture.

4.2.2 Cloud-Edge hardware

In Fig. 39, we provide a unified, global view of the CloudSkin platform for NCT. In practice, however,
we have opted to evaluate each of the challenges independently, which leads to specific hardware.
In the following, we describe the hardware platforms we used to evaluate our research contributions
regarding the NCT challenges:

Smart CPU & GPU hardware allocation (CH1): The CPU & GPU allocation experiments were
conducted on a Kubernetes-based cluster designed to emulate a surgical edge environment. The
cluster consisted of four nodes interconnected via 1 GbE Ethernet: one control plane node and three
worker nodes. The control plane hosted the Pravega segment store, while the worker nodes provided
heterogeneous compute resources. Two of the worker nodes were equipped with 4x NVIDIA RTX
A5000 GPUs each, paired with Intel Xeon Silver 4216 CPUs (64 logical cores), and 16 GB of RAM
per node. The third node featured a GTX 1080 GPU and an Intel i7-7700K CPU (4 cores). Storage
was backed by a Samsung NVMe SSD (2 TB, 3,200 MB/s read, 2,400 MB/s write) to ensure high
throughput for video ingestion. This setup allowed experiments on GPU time-slicing, pod anti-
affinity, and bin-packing strategies for NCT Al models (instrument detection, phase recognition, liver
segmentation), focusing on maintaining > 30 FPS under varying resource allocation policies.

Predictive streaming auto-scaling hardware (CH2): The predictive auto-scaling experiments
were deployed on a Kubernetes cluster comprising seven nodes, each provisioned with 8-16 CPU
cores, 16 GB of memory, and 80-100 GB of persistent storage. The cluster hosted a full Pravega
deployment, including three Bookkeeper instances, three Zookeeper instances, and a horizontally
scalable segment store. Long-term storage was integrated via MinlO, simulating object storage for
tiered data management. The experimental environment was designed to mimic real-world condi-
tions for latency-sensitive workloads, with video streams ingested through GStreamer pipelines and
processed by Al inference models running in containerized pods.

Programmable stream data management hardware (CH3): The hardware used for evaluating
CH3 is the same as for CH2. In this case, we deployed an additional Nexus instance (plus Redis
for metadata) to perform data management operations between Pravega and MinlO. Note that one
VM was equipped with an NVIDIA Al16 GPU (16 GB VRAM) for executing Al-based streamlets (e.g.,
NCT models for surgical annotation).

4.3 Experiments, KPIs and benchmarks

This section details the experiments conducted to validate CloudSkin in the Surgery use case, fo-
cusing on three core challenges: (CH1) smart CPU/GPU allocation for real-time Al inference, (CH2)

Page 42 of 69

HORIZON - 101092646 CloudSkin
29/12/2025 RIA

Table 9: Summary of use case-specific KPIs for Surgery.

ucKPI Description

ucKPI1(KPI2) : Edge resource 3x workload density (12 vs 4 streams) and better GPU utilization up to

utilization 50%.

ucKPI2(KPI3): Real-time edge 30FPS sustained for multiple surgical endoscopic videos in an Edge

processing constrained infrastructure.

ucKPI3(KPI6) : Confidential Running a GStreamer pipeline in SCONE incurred a 3.41 x slowdown,

TEE execution while pure Python inference in TEE added 14.96% overhead, proving
feasibility.

ucKPI4(KPI11) : Low-latency Predictive auto-scaling improves by nearly 6 x worst-case p90 latency

streaming compared to reactive approach, which is key for real time Al video
inference.

ucKPI2(KPI14) : In-transit data | Buffering masks long-term storage outages in Pravega; Semantic

management annotation adds 0.3s to 1.2s per PUT request to automatically add
metadata to objects.

Edge Core/Cloud
Video frames

é’ \Q % M ven ream
e dl% StE—t‘ s2 \S/itdeo Data

reaming s1 o

System

Ta Storage

Surgery room

s1 Storage buffering s2 Semantic object labeling Nexus instances Object store

Figure 40: Surgiomics challenges addressed with Nexus.

predictive auto-scaling of streaming storage, and (CH3) programmable in-transit data management.
An additional experiment evaluates confidential execution of Al inference.

Experiment 1 (CH1): Smart CPU & GPU Allocation

* Objective: Validate bin-packing strategies to maximize GPU utilization while maintaining frame
rate SLOs (>30 FPS).

* Methodology: Kubernetes-based edge cluster with NVIDIA RTX A5000 GPUs; workloads in-
clude instrument detection, phase recognition, and liver segmentation. Metrics collected via
Prometheus/Grafana.

* Benchmark: Compare baseline (1 stream/GPU) vs bin-packing (3 streams/GPU).
Experiment 2 (CH2): Predictive Streaming Storage Auto-Scaling

* Objective: Reduce latency spikes during Pravega scaling events using LSTM-based predictive
elasticity. Metrics collected via Prometheus/Grafana.

* Methodology: Replay 2-month NCT OR workload traces at 15x speed; compare reactive vs
predictive scaling.

* Benchmark: Custom workload generator that auto-scales video pods according to NCT surgery
room traces.

Experiment 3 (CH3): Programmable Data Management
* Objective: Enable buffering under storage outages and semantic annotation for enriched re-

trieval. Metrics collected via Prometheus/Grafana.

Page 43 of 69

HORIZON - 101092646 CloudSkin
29/12/2025 RIA

* Methodology: Nexus streamlets intercept Pravega — MinlO tiering; measure ingestion continu-
ity and PUT latency.

* Benchmark: OpenMessaging Benchmark generating surgical images as events to a Pravega
stream.

The KPI results for these experiments can be seen in Table 9.
4.4 Results

Experiment 1 (CH1): Smart CPU & GPU Allocation for Surgical AI Models A critical challenge
for NCT’s surgical Al video platform is achieving efficient CPU and GPU allocation across hetero-
geneous Al models (instrument detection, phase recognition, liver segmentation) on limited Edge
infrastructure. Traditional one-stream-per-GPU approaches avoid contention but lead to signifi-
cant underutilization (< 20% GPU usage), preventing hospitals from supporting multiple concur-
rent surgeries with available hardware. To address Challenge CH1, we investigated a bin-packing
optimization strategy that consolidates multiple streams onto shared GPUs via time-slicing while re-
specting multi-dimensional resource constraints: CPU cores, GPU memory, and model-specific frame
rate Service Level Objectives (SLOs > 30 FPS).
The key objectives of this experiment are:

* Characterize CPU requirements: Empirically determine the minimum CPU allocation needed to
maintain >30 FPS for each NCT AI model through profiling-based analysis.

e Validate bin-packing feasibility: Demonstrate that GPU time-slicing enables consolidation of mul-
tiple heterogeneous streams without violating frame rate SLOs or degrading inference quality.

* Quantify resource efficiency gains: Compare baseline deployment (one stream per GPU) against
intelligent bin-packing to measure improvements in GPU utilization and concurrent surgery
capacity.

The experiments were conducted on a Kubernetes-based edge cluster emulating a surgical envi-
ronment. The cluster comprised four nodes interconnected via 1 GbE Ethernet, with worker nodes
equipped with 4x NVIDIA RTX A5000 GPUs, Intel Xeon Silver 4216 CPUs (64 logical cores), and
16 GB RAM. Storage was backed by Samsung NVMe SSDs (2 TB, 3,200 MB/s read) to ensure high
throughput for video ingestion. Each GPU was exposed as a distinct Kubernetes resource
(nvidia.com/gpu-0, nvidia.com/gpu-1, etc.) via NVIDIA GPU Operator, enabling fine-grained al-
location. Time-slicing was configured to allow up to 6 concurrent pods per GPU. The NCT surgical
video processing pipeline was deployed using Pravega for stream storage and GStreamer for video
ingestion, with three AI model workloads: Instrument Detection (4 CPU cores), Phase Detection (4
CPU cores), and Liver Segmentation (8 CPU cores, higher computational demand due to semantic
segmentation complexity).

Phase 1: CPU Profiling and Bin-Packing Scalability Before evaluating bin-packing strategies,
we first characterized the CPU requirements for each workload type to ensure adequate resource
allocation, then validated scalability under GPU time-slicing. Figure 41 presents results for Liver
Segmentation, the most computationally demanding workload. The CPU profiling (left) reveals that
this workload requires 8 CPU cores to achieve stable 30 FPS performance, reflecting the higher com-
putational overhead of semantic segmentation models. GPU utilization ranges from 8-27.5% across
CPU allocations, and GPU memory usage increases to ~600-1175 MB, with power consumption
reaching 108-150 watts under full load. The bin-packing scalability results (right) show that framer-
ate remains acceptable up to 3 concurrent streams, beyond which slight degradation begins to occur.
GPU utilization scales from ~18% for 1 stream to ~75% for 6 streams. GPU memory usage scales
to ~3500 MB for multi-stream configurations, with memory utilization reaching ~14%. We found
that packing the processing of too many streams onto one GPU concurrently leads to this degrada-
tion - spreading the processing of liver segmentation streams across multiple GPUs with anti-affinity
resolves this, as can be seen in Figure 42.

Page 44 of 69

CloudSkin

HORIZON - 101092646

29/12/2025

RIA

50
45
40
35

30

FPS
N~
bl

20
15

10

o

4.5

4.0

25

150

140

Watts

120

110

FPS vs CPU - Liver Segmentation

FPS vs Streams - Binpacking - Liver Segmentation - 8CPU per Pod

Framerate vs CPU Request GPU Utilization vs CPU Request 5 Framerate GPU Utilization
—8— Avg FPS per stream —e— Avg FPS per stream
27.5
45 70
25.0 40
25 35 60
30
20.0 " 50
. £25 ®
20 40
15.0
- 15
12,5 _— 30
- 10
10.0 ad 5
o« 20
7.5 0
1000 2000 3000 4000 5000 6000 7000 8000 1000 2000 3000 4000 5000 6000 7000 8000 1 3 4 5 6 1 3 4 6
GPU Memory Utilization vs CPU Request 1200 GPU Memory Used vs CPU Request GPU Memory Utilization GPU Memory Used
14 3500
1100
12 3000
1000
10 2500
900
2 R g 2 2000
800
6 1500
700
4 1000
600
2 500
1000 2000 3000 4000 5000 6000 7000 8000 1000 2000 3000 4000 5000 6000 7000 8000 1 3 4 5 6 1 3 4 6
GPU Power vs CPU Request Actual CPU Usage vs CPU Request GPU Power Pod CPU
8000 1 —e— Actual usage
Request (reference) 5100
7000 200
5 5000
& 6000
/amﬂ 180 4900
o 5000
3 4 & 4800
=] % Q
2 4000 160 E
O 4700
5 3000
< 4600
2000 140
4500
1000 4400
1000 2000 3000 4000 5000 6000 7000 8000 1000 2000 3000 4000 5000 6000 7000 8000 1 3 4 5 6 1 3 4 6

Pod CPU Request (mCPU)

Pod CPU Request (mCPU)

Number of streams

Number of streams

Figure 41: Liver Segmentation workload: (left) CPU profiling showing stable 30 FPS at 8 CPU cores
with 8-27.5% GPU utilization, (right) bin-packing scalability maintaining almost consistent perfor-

mance up to 6 concurrent streams with GPU utilization scaling from 18% to 75%.

Page 45 of 69

HORIZON - 101092646

CloudSkin
RIA

29/12/2025
FPS vs Streams - Binpacking - Liver Segmentation - 8CPU per Pod - Multi-GPU
Framerate GPU Utilization
50 30
—8— Avg FPS per stream
45 4
28 4
40 4
35 26 1
30 4 —_ ., 24 4
a 25 X
22 4
20 A
15 20 4
10 18 1
> 16
0l— : : ; : r : . . : : :
1 2 3 4 5 7 1 2 3 4 5 7
GPU Memory Utilization GPU Memory Used
4.25
4.00 1 10001
3.75 4
900
3.50 4
2 &S
3.25 4 800
3.00 4
700 4
2.75
2.50 A Py Iy & 6001 o P &
1 2 3 4 5 7 1 2 3 4 5 7
GPU Power Pod CPU
150 A 5000 |
1451 4800 -
140 A
4600 -
£ 1354 2
o Q
= £ 4400
130 A
125 A 4200 4
120 A
4000 4
1 2 3 4 5 7 1 2 3 4 5 7

Number of streams

Number of streams

Figure 42: Multi-GPU bin-packing scalability for Liver Segmentation workloads, demonstrating suc-
cessful consolidation of heavyweight models across multiple GPU devices while maintaining quality

of service.

Page 46 of 69

HORIZON - 101092646 CloudSkin
29/12/2025 RIA

Figure 43 shows results for Instrument Detection workloads. The CPU profiling (left) reveals
that framerate plateaus at approximately 30 FPS when allocated 4 CPU cores (4000 mCPU), with
diminishing returns beyond this threshold. GPU utilization remains very low at ~0.2-1.4% across
all CPU allocations, indicating that the workload is not GPU-bound but rather requires sufficient
CPU resources for video decoding and pre-processing operations. The bin-packing scalability results
(right) demonstrate that Instrument Detection workloads scale gracefully from 1 to 15 concurrent
streams on shared GPUs, maintaining stable 30 FPS per stream across all configurations. GPU uti-
lization increases modestly with stream count (from ~2.3% for 1 stream to ~4.9% for 15 streams),
confirming efficient GPU sharing without performance degradation. This validates the feasibility of
consolidating multiple streams per GPU for lightweight detection models.

Figure 44 presents results for Phase Detection workloads, which exhibit comparable CPU require-
ments to Instrument Detection. The CPU profiling (left) shows that this workload achieves 30 FPS
with 4 CPU cores, with very low GPU utilization around 0.6-1.7%. CPU usage patterns show near-
linear correlation with CPU request allocation, confirming that the Kubernetes resource management
system correctly enforces CPU limits. The bin-packing scalability results (right) show similar scaling
behavior, with consistent 30 FPS maintained across 1-15 concurrent streams. GPU utilization in-
creases modestly with stream count (from ~3% for 1 stream to ~7% for 15 streams), and CPU usage
scales linearly with stream count, demonstrating predictable resource consumption. These profil-
ing results establish practical limits for bin-packing: up to 6 lightweight streams or 3 heavyweight
streams per GPU while maintaining quality of service.

Phase 2: Baseline vs Bin-Packing Comparison To quantify the resource efficiency gains of bin-
packing, we conducted a controlled comparison between baseline deployment (one stream per GPU,
no sharing) and optimized bin-packing (multiple streams per GPU). Figure 45 presents the compar-
ison results. The baseline configuration (left) shows 4 streams distributed across 4 dedicated GPUs.
Each stream maintains stable 30 FPS, but GPU utilization is only ~20% across the four devices, in-
dicating significant under utilization. The total system capacity is 4 concurrent streams. In contrast,
the bin-packing approach (right) consolidates 12 streams onto 4 GPUs (3 streams per GPU via time-
slicing). All 12 streams maintain stable 30 FPS, while GPU utilization increases to ~50% across the
four devices, representing much more efficient resource usage. Compared to baseline, bin-packing
achieves 3 x higher workload density (12 vs 4 streams) using the same GPU resources (4 GPUs). This
translates to a 2.5 x improvement in resource utilization without compromising inference quality.

These results validate the intelligent bin-packing optimization strategy for Challenge C1, demon-
strating how profiling-based CPU allocation and GPU time-slicing enable efficient multi-dimensional
resource packing. By achieving 3 x higher workload density (12 vs 4 streams) while maintaining strict
frame rate SLOs (>30 FPS), this approach maximizes utilization of scarce edge resources, allowing
NCT to support more concurrent surgeries with limited GPU infrastructure. This directly addresses
the hospital’s challenge of managing heterogeneous Al models on constrained edge hardware, re-
ducing idle capacity and operational costs while ensuring uninterrupted real-time video analytics
for surgical decision-making.

Phase 3: Confidential inference for inference Lastly, we evaluated the performance of adding
confidentiality to the inference. This is done by leveraging SCONE’s lift-and-shift approach to the
workload we have. We designed two experiments: one with GStreamer and one with pure Python.
Both experiments were conducted on a 32-core server with an Intel Xeon Gold 6346 processor at
3.10 GHz and 236 GB of memory. For SCONE-variants, we executed in multiple modes: Hardware,
EDMM, and Simulation. However, for compactness, we show results only for the Hardware mode,
which is more compatible with most hardware.

In the first experiment with GStreamer, the whole framework, including the ML inference plugin,
is executed in the TEE. The time is measured by GStreamer itself. Meaning, it begins when the
enclave has been created (in the confidential variant) and GStreamer is ready, and continues until the
final output has been written to disk. In addition to the ML inference plugin, the process also uses
multiple other plugins, such as qtdemux, h264parse, videoconvert, x264enc, and mp4mux. Here, we

Page 47 of 69

CloudSkin

HORIZON - 101092646

29/12/2025

RIA

FPS
N
]

FPS vs CPU - Instrument Detection

FPS vs Streams - Binpacking - Instrument Detection - 4CPU per Pod

Framerate vs CPU Request GPU Utilization vs CPU Request 0 Framerate GPU Utilization
5.0
—e— Avg FPS per stream 1.4 %d —8— Avg FPS per stream
g 45
4.5
12 - 40
T~
~—— 35
4.0
1.0 30]{ e—e—0— —e
®o8 £2 * 35
20
06 15 3.0
0.4 10
5 25
0.2 0
1000 1500 2000 2500 3000 3500 4000 4500 5000 1000 1500 2000 2500 3000 3500 4000 4500 5000 4 6 8 10 12 14 6 8 10 12 14
GPU Memory Utilization vs CPU Request GPU Memory Used vs CPU Request GPU Memory Utilization GPU Memory Used
3500
20 10000
3000 9000
35
8000
o 2500 . @
= = 30 =
7000
2000
% 6000
1500 2 5000
1000 1500 2000 2500 3000 3500 4000 4500 5000 1000 1500 2000 2500 3000 3500 4000 4500 5000 4 6 8 10 12 14 6 8 10 12 14
GPU Power vs CPU Request Actual CPU Usage vs CPU Request GPU Power Pod CPU
2825
5000 1 —e— Actual usage 101.8
Request (reference) 2800
4500 1016
& 4000 101.4 275
2
W, 3500 101.2 2750
o n =]
2 3000 S & 2725
W % 101.0 m
a2
O 2500 100.8 2700
T
El
& 2000 100.6 2675
1500 1004 2650
1000 1002 2625
1000 1500 2000 2500 3000 3500 4000 4500 5000 1000 1500 2000 2500 3000 3500 4000 4500 5000 4 6 8 10 12 14 6 8 10 12 14

Pod CPU Request (mCPU)

Pod CPU Request (mCPU)

Number of streams

Number of streams

(left) CPU profiling showing stable 30 FPS at 4 CPU cores

Figure 43: Instrument Detection workload

with very low GPU utilization (0.2-1.4%), (right) bin-packing scalability maintaining performance

up to 15 concurrent streams with GPU utilization reaching 2.3—4.9%.

Page 48 of 69

CloudSkin

HORIZON - 101092646

29/12/2025

RIA

FPS
N
]

FPS vs CPU - Phase Detection

FPS vs Streams - Binpacking - Phase Detection - 4CPU per Pod

Framerate vs CPU Request GPU Utilization vs CPU Request 5 Framerate GPU Utilization
—e— Avg FPS per stream —e— Avg FPS per stream 7
45
16
40
14 35 6
.I'.\I\./
30
<12 & 25 85
&
20
1.0 1
4
10
08 L\
_— 5
[o 3
0
1000 1500 2000 2500 3000 3500 4000 4500 5000 1000 1500 2000 2500 3000 3500 4000 4500 5000 2 4 6 8 10 12 14 6 8 10 12 14
GPU Memory Utilization vs CPU Request GPU Memory Used vs CPU Request GPU Memory Utilization GPU Memory Used
3000 45 11000
10000
2500 40
9000
35
o 2000 o o 8000
= = =
30
7000
1500
» 6000
1000 20 5000
1000 1500 2000 2500 3000 3500 4000 4500 5000 1000 1500 2000 2500 3000 3500 4000 4500 5000 2 4 6 8 10 12 14 6 8 10 12 14
GPU Power vs CPU Request Actual CPU Usage vs CPU Request GPU Power Pod CPU
105
5000 1 —e— Actual usage
2825
Request (reference)
4500
_ 104 2800
m 4000
2775
E 103
> 3500
2 2750
o n =]
£ 3000 m 102 5
2 E 2725
G 2500
s 101 2700
S 2000
<
1500 100 2675
1000 2650
1000 1500 2000 2500 3000 3500 4000 4500 5000 1000 1500 2000 2500 3000 3500 4000 4500 5000 2 4 6 8 10 12 14 6 8 10 12 14

Pod CPU Request (mCPU)

Pod CPU Request (mCPU)

Number of streams

Number of streams

Phase Detection workload: (left) CPU profiling showing stable 30 FPS at 4 CPU cores with

very low GPU utilization (0.6-1.7%), (right) bin-packing scalability maintaining performance up to

15 concurrent streams with GPU utilization reaching 3-7%.

Figure 44

Page 49 of 69

HORIZON - 101092646 CloudSkin
29/12/2025 RIA

(89) Asowaw z ndo

0
D [
0

(89) kowsw 0 Ndo
(89) Asowaw T nd9

0ndo
1ndo
znéo
€£ndo
Ndd [e3oL

n

3

3

N
- 3
N
3
o
o
o
5 =
= ° g
5
F 3 3 3
3 < < 3
3 c w c @
> 9 = 8 g =
= & < 5 g | 5
I o c -3 2 = o
2 Q =) < - 9
e] > 7 &
2 =2 5 = 8 1] S 3
3 [ER g 3 N g
E a2 a2 g 2 3
z g z S s
3 @ S =z
[o e o 5
s 2 3 H 3 2
& Q 5 3 El
5) o 5 g 2 3
] z
g 3
& S
H e
E
S

05

og
jop B T

8
3 i
32
= H
(S) S S) S— AR S S S — g
° 5]
N
%
2 g g9 g
- -
s 5 3 3
32 3 3 2 @ @ 9 o o FPS
g § § @ - - - 9 = w & g
g & 8 8 S 5 5 . <3 o B g8 5 8
D|:| c D
- L z
5
N H
= S S
H
oo
3
o
o
o
5 =1
° I
= g
° =z [} o 3
@ bl 2 -
3 c < 3
B 5 " < 3
< Q £ B - H
a E
= & < 5 5 ® El
- < = = w Q
3 & g s E w 9
® 5 S N 8
< @ 2 @ 2 [ES
9 i 3 ~ =
] 2 E ¢ 00z > E
z E z = s
3 3 =z
I , [a 5
o 3 3 8 g
e a o E
5 o) 3 8 a3
z
o}
Ay
&
®
3
oo &
®
3
N
3
2
-]
H
N S S [B S S 8
3
%

Figure 45: Baseline vs bin-packing comparison: (left) Baseline deployment with 4 streams on 4 ded-

icated GPUs showing low utilization (~20%), (right) bin-packing deployment with 12 streams on 4

GPUs showing 3x higher density and ~50% utilization. CPU utilization rises from ~21% to ~63%.
Page 50 of 69

HORIZON - 101092646 CloudSkin
29/12/2025 RIA

.
=
Q)
<
D
0Q
Q
(\
o

I

]
Reader 1 ;
Reader 2 <------ '
Reader ...

Figure 46: Experiment 2 deployment.

noted that the performance overhead against the native execution is 3.41x.

Since the overhead is relatively large, we consider our second experiment: comparing only the
inference. To this end, we implemented a pure Python application to run load and process the in-
put video, perform the inference, and store the combined output on the disk. We start measuring
the duration just before the inference and after the loading and pre-processing of the video frame.
For completeness, we also add an option to encrypt/decrypt the input and output to understand
its overhead. We noted that SCONE’s overhead is 14.96% and the encryption overhead (in Native
execution) is 2.1%.

Experiment 2 (CH2): Predictive streaming storage auto-scaling A key challenge in the NCT PoC
is adapting the streaming infrastructure to fluctuating workloads without incurring latency spikes
caused by frequent reactive auto-scaling events. To address this, we proposed a predictive LSTM-
based auto-scaling mechanism, which anticipates workload changes and adjusts resources proac-
tively. This mechanism was validated through simulation experiments in D5.2, and the present study
serves as an empirical demonstration of its effectiveness.

In particular, our goals in this experiment are:

e Validate predictive scaling in practice: Demonstrate the effectiveness of the LSTM-based predictive
auto-scaling mechanism in a real-world PoC environment for latency-sensitive video analytics.

» Compare predictive vs. reactive approaches: Quantify improvements in system stability and latency
by contrasting predictive scaling with traditional reactive auto-scaling strategies in real settings.

The experiments were deployed on a Kubernetes cluster comprising seven nodes, each provi-
sioned with 16 GB of memory, 80-100 GB of persistent storage, and between 8 and 16 CPU cores
to ensure sufficient computational capacity for workload scaling. The cluster also hosted a Pravega
deployment configured with three Bookkeeper instances, three Zookeeper instances, alongside the
default segment store that will be horizontally scaled accordingly. Long-term storage was integrated
via MinlO. This way, we ensure the experiments run under realistic conditions (see Fig. 46).

The need for auto-scaling is evident in the use-case we target in this study: the National Center
for Tumor Disease (NCT, Germany). Fig. 47 shows the complete 2-month trace that NCT collected
and anonymized for us. By a simple inspection of the trace, we can observe strong daily patterns
in the utilization of the available surgery rooms (10). Even more, weekends tend to exhibit lower
utilization compared to weekdays. These kinds of patterns are inherent to human activity and have
been observed in many other scenarios. To ensure realistic simulation and execution of reactive
and LSTM-based workloads, the provided NCT workload traces were replayed at 15x real-time
speed. This approach allows one week of NCT workload data to be processed by the system in
approximately 12 hours of actual time.

The pods generating video streams against Pravega were using a video file from a “phantom”
test in NCT. In surgical fields, a phantom is a representation of a human body made with synthetic
materials for training purposes. Next, we provide a definition for the main metrics used in this study:

Page 51 of 69

HORIZON - 101092646 CloudSkin
29/12/2025 RIA

Occupancy of Surgery Rooms at NCT Ocuppancy of Surgery Rooms at NCT (1 week)

M MF Bl me

2 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 O
Time (days) Time (days)

Surgery R

Surgery Rooms in Use
o L

Figure 47: NCT surgery room utilization traces.

Reactive Auto-scaling - 1 Week

Workload (Reader & Writers)
—— Segment Stores

Number of Instances

0

Figure 48: NCT storage buffering and annotation streamlets on Pravega streams.

* Segment Write Latency: Captures the latency of write operations to Pravega segment stores. It
reflects the impact of scaling events on the streaming storage layer and is key for understanding
performance stability.

* Number of Auto-Scaling Events: Counts how often the system scales up or down during the
experiment. This metric indicates the stability of the scaling algorithm and its ability to avoid
disruptive reconfiguration.

e Tail Latency Distribution: Analyzes the extreme latency values (e.g., p99) to assess the severity
of performance degradation during scaling events. This is particularly important for latency-
sensitive workloads like real-time video analytics.

Fig. 48 illustrates the behavior of the reactive auto-scaling algorithm over a 1-week execution pe-
riod. The plot shows frequent scaling events triggered by short-term latency observations, which
lead to instability in the number of active Pravega segment stores. Specifically, the system performs
approximately 112 scaling actions, with instance counts oscillating between 1 and 8 segment stores.
This oscillatory behavior highlights the main drawback of reactive approaches: they respond to im-
mediate conditions without considering workload patterns, causing unnecessary scaling actions that
can disrupt system performance.

In contrast, Fig. 49 depicts the execution under the LSTM-based predictive auto-scaling mecha-
nism. The number of scaling events is 16 in total, which is roughly 7 x less than the reactive approach
during said execution timeframe. The system exhibits smoother transitions between scaling states,
maintaining a maximum store instances of 2 during peak workload hours. This stability stems from
the predictive nature of the algorithm, which anticipates workload changes based on historical pat-
terns, reducing the need for frequent adjustments, and minimizing operational overhead.

Fig. 50 shows the segment write latency distribution for reactive auto-scaling during a single day
of workload replay. Noticeable latency instabilities and spikes occur around scaling events, with
5 major peaks reaching up to 1 second, while baseline latency (median) stays between 50ms and

Page 52 of 69

HORIZON - 101092646 CloudSkin
29/12/2025 RIA

LSTM-based Auto-scaling - 1 Week

H Workload (Reader & Writers)
81 | —— Segment Stores

Number of Instances

g S N S

0

Figure 49: NCT storage buffering and annotation streamlets on Pravega streams.

Segment Write Latency

15

Figure 50: NCT storage buffering and annotation streamlets on Pravega streams.

80ms. These spikes confirm that reactive adjustments introduce transient performance penalties, as
tail latencies (p0.99) surge by an order of magnitude during reconfigurations. Such variability can
severely impact latency-sensitive applications like real-time video analytics, where maintaining low
tail latency is critical. In Fig. 51, the latency profile under predictive scaling is presented. Compared
to the reactive approach on the same day’s workload, latency remains more stable, with only 2 minor
spikes peaking at ~ 600ms, and a median consistently 40ms and 70ms. This represents roughly a 3x
reduction in spike frequency and a 40% decrease in peak latency compared to reactive scaling. These
improvements show the advantage of predictive scaling in maintaining consistent and smoother
performance, even during workload fluctuations, by reducing disruptive reconfiguration events.

Fig. 52 shows the cumulative distribution function (CDF) comparing the p90 latency for both
auto-scaling approaches across the entirety of the workload week. The predictive LSTM-based method
achieves a much tighter latency distribution, with 99.9% of requests completing under 150ms, whereas
the reactive approach exhibits a heavy tail, with latencies extending up to 1000ms at the extreme.
This represents an improvement of nearly 6 x in worst-case p90 latency and eliminates high outliers
that can degrade real-time streaming performance. This result reinforces the hypothesis that predic-
tive scaling improves latency guarantees for real-time streaming workloads.

Experiment 3 (CH3): Advance surgical stream data management across the Cloud-Edge To ad-
dress the limitations of streaming storage in surgical workflows, CloudSkin integrates Nexus, a
programmable data management layer that intercepts tiered storage operations between Pravega
and long-term object storage (see D3.4). Nexus enables in-transit data processing through streamlets,
lightweight functions deployed transparently across the Cloud-Edge continuum. For the NCT use
case, we developed two specialized streamlets: (i) a Buffering Streamlet that provides temporary edge-
side persistence during object store outages, ensuring uninterrupted ingestion and real-time analytics
in Pravega; and (ii) an Annotation Streamlet that enriches video chunks with semantic metadata (e.g.,
surgical phase, instrument tags) by invoking NCT AI models during offload. These programmable

Page 53 of 69

HORIZON - 101092646 CloudSkin
29/12/2025 RIA

Segment Write Latency

= p0.1 == p0.5 = 99 = p0.9999

Figure 51: NCT storage buffering and annotation streamlets on Pravega streams.

Max end-to-end latency (p90 SLO) - 1 day
1.000

0.999

0.998

0.997

0.996

CDF

High tail latency values due to
0.995 auto-scaling Prave: a

ga instances.
0.994
0.993

0.992

0.991 —— Reactive autoscaling
== LSTM Predictive autoscaling

0.990

10! 102 10°
End-to-end latency (ms)

Figure 52: NCT storage buffering and annotation streamlets on Pravega streams.

functions transform the data path into a value-added pipeline, improving resilience and accelerating
downstream analytics without disrupting real-time inference.

We evaluate the streamlets developed for NCT, starting with the buffering streamlet designed to
provide temporary Edge-side storage and mask long-term storage unavailability in Pravega. Fig. 53
compares Pravega’s behavior with and without our streamlet during induced unavailability of its
backing object store (MinlO). Pravega is configured with only 1GB of cache to accelerate the issue
manifestation. Visibly, ingestion throughput (10MBps) halts after ~ 110s when MinlO becomes un-
available. In contrast, our buffering streamlet absorbs the data during the outage and asynchronously
uploads it once MinlO is restored, effectively masking the disruption. This streamlet adds value
when relying on Pravega streams to ingest and perform Al on real-time surgical multimedia.

Moreover, the NCT pipeline runs AI models on streamlets to annotate data with semantic tags.
Fig. 53 shows the performance of an Al model that detects surgical instruments in JPEG images and
tags corresponding stream chunks. PUT request latency includes interception, deserialization, infer-
ence, and tagging. Chunk size and image sampling rate significantly impact tagging performance
(e.g., P50 from 0.3 to 1.2 seconds). These annotations help NCT data scientists quickly locate relevant
video fragments within object buckets.

4.5 Demos

Demo 1: Smart CPU & GPU Allocation for NCT Surgical AI Models (CH1) The demo show-
cases a real-time comparison between traditional GPU allocation and CloudSkin’s intelligent bin-
packing strategy for NCT’s surgical video analytics workloads. Using a Kubernetes-based edge
cluster with NVIDIA RTX A5000 GPUs and time-slicing capabilities, the demo processes live sur-
gical video streams ingested via Pravega and GStreamer through three heterogeneous Al inference
pipelines: instrument detection, phase recognition, and liver segmentation. In the baseline mode,
each video stream is allocated to a dedicated GPU following the conventional one-stream-per-GPU
approach, resulting in low GPU utilization (=20%) and limited capacity to support concurrent surg-
eries. The bin-packing mode leverages profiling-based CPU allocation and GPU time-slicing to con-
solidate multiple streams onto shared GPUs, packing 3 streams per GPU while respecting multi-

Page 54 of 69

HORIZON - 101092646 CloudSkin

29/12/2025 RIA
25 Data ingestion upon long-term storage unavailability (Pravega)
I T I
| External storage External storage ,‘ Pravega |
20 unavailable available again ‘ —Pravega + Nexus
215+ =
[oa)
= 10k ! =
5 |]
[Data ingestion halted [—> |
0 | | | i |

50 100 150 200 250 300
Time (seconds)

Figure 53: NCT storage buffering and annotation streamlets on Pravega streams.

Object annotation processing time via an NCT Al model (surgery tool detection)
T T T T

P i = -
0.8 0 i
"' 1MB chunks (sampling=100%)
L 06 ; 1MB chunks (sampling=50%) ||
O o4] ——2MB chunks (sampling=100%)
A ',' - = = 2MB chunks (sampling=50%) ||
0.2 ,." a
0 g . L .l' L L L | |
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Processing time (seconds)

Figure 54: NCT storage buffering and annotation streamlets on Pravega streams.

dimensional constraints: CPU cores (4 for instrument detection, 4 for phase detection, 8 for seg-
mentation), GPU memory limits, and frame rate SLOs (>30 FPS). The demo visually contrasts both
approaches through live Grafana dashboards: per-stream framerate charts maintaining stable 30 FPS
across all streams, GPU utilization metrics revealing ~50% under bin-packing versus ~20% under
baseline, and resource allocation views displaying the consolidation strategy. CPU usage likewise im-
proves by climbing from ~21% to ~63%. Viewers observe how intelligent bin-packing achieves 3 x
higher workload density (12 streams versus 4 streams on the same hardware) without compromising
inference quality or latency SLOs. This demonstration highlights CloudSkin’s solution to Challenge
CH1, enabling hospitals to maximize utilization of scarce edge resources and support more concur-
rent surgical procedures with limited GPU infrastructure, reducing operational costs while ensuring
uninterrupted real-time Al assistance during surgeries.

Demo 2: LSTM-based predictive streaming storage auto-scaling (CH2) The demo showcases a
real-time comparison between reactive auto-scaling and an LSTM-based predictive scaling approach
for streaming storage services in a surgical edge scenario. Using Pravega as the elastic streaming
storage system, the demo begins by replaying anonymized operating room workload traces to em-
ulate fluctuating video ingestion demands. In the reactive mode, scaling decisions are triggered
by short-term latency thresholds, resulting in frequent oscillations and visible latency spikes dur-
ing reconfigurations. The predictive mode leverages an LSTM model trained on historical workload
patterns to anticipate resource needs and proactively adjust segment store instances. The demo vi-
sually contrasts both approaches through live dashboards: segment write latency charts, tail latency
distributions, and the number of scaling events. Viewers observe how predictive scaling achieves
smoother transitions, fewer scaling actions, and stable low-latency ingestion, ensuring uninterrupted
Al video inference during surgeries. This demonstration highlights the tangible benefits of predictive
elasticity for latency-sensitive edge workloads.

Page 55 of 69

HORIZON - 101092646 CloudSkin
29/12/2025 RIA

5 Use case: Agriculture
51 Overview
5.1.1 Business story

This use case addresses sectoral and technological challenges related to the analysis of sensor data,
aiming to enable the development of technological ecosystems for advanced analysis of agricultural
and environmental information.

On the one hand, the local use and retention of data by data providers, due to a lack of control
over its use, coupled with the diversity of data origins and types, limits analytical and decision-
making capabilities and hinders the development of related services and technologies at the local
level.

The first experiment deploys an agricultural dataspace that will unify and facilitate the loca-
tion of datasets, regardless of their origin (sensors, edge servers, private or public cloud). It will also
clarify the semantics and units of measurement of the data through the definition of data dictionar-
ies and ensure secure and controlled access and use of information through contracts and terms of
service.

Above this data space, the second experiment demonstrates the ability to build advanced infor-
mation services from this data through a cloud-based computational analytics service that inte-
grates and manages complex data, such as geospatial data from satellites.

Finally, and due to market demands, to make this solution viable, artificial intelligence models
are trained and analyzed to predict the optimal resources needed for data processing. This allows for
reduced execution times and costs by dynamically adapting them to the needs of the datasets.

5.1.2 Why this use case needs the compute continuum?

Due to the type of information coming from agricultural sensors, and the complexity of managing
geospatial information, building data analysis and management services faces a wide variety of data
sources, volumes, and computing requirements.

Applying continuous computing allows this use case to benefit from task distribution across dif-
ferent levels of the continuum, achieving the flexibility required by computational processes.

Among the advantages of its application, we highlight the reduction in the volume of data sent
to the cloud, dynamically optimizing computational resources and allowing applications to continue
functioning regardless of connectivity capacity in rural environments, by enabling data preprocess-
ing and filtering at the edge or in intermediate nodes.

From a data security perspective, the use of the continuum also allows for edge preprocessing,
which facilitates compliance with local regulations (e.g., GDPR) and minimizes data exposure in
the cloud. On the other hand, the scalability of continuous computing guarantees the management
of necessary resources and data transfer between levels, leveraging the advantages of a distributed
infrastructure that combines the local capabilities of nodes, generally connected directly to sensors,
with global capabilities, enabling more advanced analysis and decision-making services.

In conclusion, and for this use case, continuous computing is perfectly suited to the origin and
processing needs related to agricultural and environmental information.

5.2 Cloud-Edge continuum infrastructure for the mobility use case
5.2.1 Cloud-Edge hardware

The research project is based on a hybrid cloud and edge infrastructure that enables flexible data
acquisition, processing, and storage in distributed environments. The first experiment, focusing on
data space management, runs on a dedicated server within the KIO NETWORKS infrastructure.
This implementation is designed to aggregate heterogeneous data streams from edge servers and
IoT sensors. By integrating edge computing nodes, the system reduces latency, performs preliminary
data filtering and normalization, and ensures secure transmission to the centralized data space. The
architecture prioritizes scalability, interoperability, and compliance with data governance standards,
enabling efficient experimentation with diverse data sources.

Page 56 of 69

HORIZON - 101092646 CloudSkin
29/12/2025 RIA

m Monitoring
_. Panel
Co)

Learning
Plane

((?

Vs

: . L
y Data E Py
Agricultural I -
Dataspace Producer J% rﬁ‘ Al Agent
Cf) Workload gt D nd
Backpack
_for Laravel / Data Consumer
ocker
) “Runtime|
9 || docker Ny
<’ anages—»| ()
oy oy Datbe PyRun consa | LITHOPS
WorkSpaces Py N
yML JRuntime Profiler
=<,
&% ,l’:
7 "ll -

Lambda

Backend EC2 Backend Batch Backend

Figure 55: CloudSkin platform for the Agriculture use case

The second experiment addresses geospatial data integration and leverages native AWS services
to dynamically predict computing resources, achieving flexible performance and predictable scal-
ability. This implementation utilizes AWS capabilities for data management, processing pipelines,
and advanced analytics, incorporating Al models for prediction of resource allocation. By dynami-
cally adjusting computing resources based on anticipated workloads, the experiment optimizes cost-
effectiveness and ensures high availability and responsiveness. The combination of Al-driven predic-
tive scalability with geospatial data integration demonstrates the potential of cloud and edge synergy
to support complex data-intensive treatment.

5.2.2 CloudSkin platform

The first platform developed within this research initiative is a dedicated data space focused on
agricultural and environmental data. Its primary objective has been to address the legal and technical
complexities inherent in data usage and sharing.

The agricultural and environmental dataspace is not only a platform for securely sharing infor-
mation between data providers and consumers; in addition to the complexities of usage conditions
and understanding the data’s units of measurement, it represents independence of the information’s
origin from its computing level (sensors, mobile devices, edge servers, private or public cloud), al-
lowing access for cloud services regardless of the volume and type of data, and the type of service
requiring access.

The agricultural dataspace translates into the creation of a sector-specific channel for agriculture
and the environment, enabling the standardization and universalization of data exchange practices
in these fields on a single platform. This solution lays the foundation for third parties to develop new
information management and analysis services, leveraging the available datasets to generate added
value and foster innovation.

The second platform demonstrates the integration capabilities of the dataspace with external
cloud-based services, particularly those requiring the processing of complex datasets such as geospa-
tial information. This integration is done through RESTful APIs and standardized connectors, allow-
ing both the ingestion of data from the data space to external services and the return of processed
results back to the data space, as demonstrated by the second experiment, with the integration with
a geospatial data analysis pipeline.

Beyond data integration, this platform incorporates mechanisms for predicting the computational

Page 57 of 69

HORIZON - 101092646 CloudSkin
29/12/2025 RIA

Data Owner:
Farmer

Data Consumer:

] ” ,’
pr—— C}‘fa”"g Vs Government
louse / :
EIIEES P (Enviromental, Emergency Dpt.)
Vocabulary o
Geospatial Usage ;
G | coicies onnecToR [T v
Usage
App Store policies
ot

1DS CONNECTOR
(
Data Provider:
Community of Irrigators Service Provider:
and/or Service Companies Al Decision Support System

Figure 56: Dataspace relationships.

resources required for optimal performance. This functionality provides valuable insights for system
dimensioning and cost forecasting, thereby supporting the efficient and sustainable deployment of
advanced analytical services in cloud environments.

Complementing these efforts, a third platform has been designed to monitor and visualize re-
source consumption in real time. This measurement platform delivers key performance indicators
that allow researchers and stakeholders to evaluate service behavior during execution in cloud in-
frastructures. Together, these three platforms form a unified use case that provides a comprehen-
sive technical solution for data management, as shown in Figure 55. From sensor-based detection,
through semantic harmonization using standardized data dictionaries, to complex analysis and pre-
dictive dimensioning within cloud services, the ecosystem addresses the full lifecycle of agricultural
and environmental data. Data

5.3 Experiments, KPIs and benchmarks

Experiment 1: Dataspace The first experiment addresses the challenge of creating an agricultural
data space as a solution for data sharing in the complex environment of agricultural and environ-
mental management. This data space also serves as a practical case study to analyze the integration
of cloud computing, edge computing, and Internet of Things (IoT) technologies. It includes datasets
with information from sensors and other sources, that are analyzed and used by third parties.

This experiment tackles the challenge of addressing the widespread reluctance to share infor-
mation in the agricultural sector, as well as the complexity of accessing data from agricultural and
environmental sensors.

As a solution, a prototype cloud-based data space has been developed that ensures responsible
use of information for both the data provider and the data user (as shown in Figure 56).

The first experiment, in addition to incorporating requirements for warranted use, availability,
and data sharing in accordance with the conditions established by the data producers, analyses the
execution impact related to the loading and sharing of information from sensors and edge servers
with the dataspace’s cloud platform, thereby enabling the determination of the capacity and perfor-
mance of the developed platform.

Experiment 2: Water usage footprint In Experiment 2, we are developing an advanced analytics
application to measure water consumption through:

* Sensor data, including humidity and well water levels,
* Sentinel-2 multispectral satellite images, and

e LiDAR data for spatial precision.

Page 58 of 69

HORIZON - 101092646 CloudSkin
29/12/2025 RIA

g Data Cockpit

Efficien

tly manage and explore your data

Upioad Fil S3Exqiore PUDSC Dalase Metaspace Geospatial

Cloudskin Section

loudskin Detssets: | Elzctrical conductivty B10 - Aread} v

Cloudskin Logs

Geospatial Section

o

Geospatial Logs:

Figure 57: Data consumer interface

The experiment studies how to develop at a technical level:
* Predictive analytics for better decision-making,

* Integration of diverse data sources,

e Scalable infrastructure,

* Efficient data storage and processing,

Technically, this experiment works on:

¢ Al-driven crop classification using Sentinel-2 data, and

e other data from cloudskin project, enabling multi-source data integration for efficient decision-
making.

The Proof of Concept has the goal to validate the technical feasibility of this project.
From the data perspective:

¢ Data Producers gather information and send it to the Agricultural Dataspace.
¢ Data Consumers analyze the data to generate actionable insights.

¢ The Learning Plane, powered by Al, ensures efficiency and scalability, with workloads man-
aged by the Workload Manager.

This Proof of Concept demonstrates the integration of different technologies to address complex
agricultural challenges while maintaining adaptability and efficiency.

I need to explain some context, such as LiDAR, Sentinel-2 data, how the integration is done, etc.
Also, since you're talking about the monitoring system and the control panel, it would be helpful to
include a screenshot.

The second experiment obtains data from the dataspace and manages satellite imagery, analyzing
the different layers and dividing the data to perform the analysis pipeline coherently and efficiently.

Our monitoring system provides a real-time overview of pipeline performance. The dashboard
features:

¢ CPU Usage for quick identification of bottlenecks,

* Disk & Network Usage, showing read /write operations and network activity,

Page 59 of 69

HORIZON - 101092646 CloudSkin
29/12/2025 RIA

I-Time Overview GanttChart GPUMetres DiskMetrics Momeory Metrics Network Metrkes

Detailed Task Duratt
e e St Tire D Upss Time @ OrberTime <O At Salle

T —

[

Al

Figure 58: Execution performance with Al optimization

* Data Transfer Speed, tracking rates across storage and networks, and
e CPU Utilization Breakdown, displaying the distribution of processing tasks.

This comprehensive view ensures rapid detection of irregularities and efficient resource allocation.
5.4 Results

To achieve the experiment, multiple software components were developed and various integrations
were performed, which we consider a valuable and reusable software outcome. We highlight the
following;:

* Profiler and monitoring API, for capturing CPU, memory, network, and storage metrics with-
out impacting performance.

¢ PyRun Platform, a multi-user environment with IAM authentication, DynamoDB storage, and
dynamic dashboards.

e DataPlug, a serverless library that allows partitioning and storing geospatial files in S3 with
geographic consistency.

* DataCockpit, an interface for importing data, configuring parameters, and launching Al-optimized
executions.

* Learning Plane, including the training of an XGBoost artificial intelligence model that learns
from real-world executions and recommends optimal configurations, reducing time and costs.

From the perspective of scientific results, the work culminated in an international publication
titled “Intelligent Optimization of Distributed Pipeline Execution in Serverless Platforms: A Pre-
dictive Model Approach,” presented at the 10th International Workshop on Serverless Computing
(ACM WoSC10 2024, in Hong Kong). Among the most notable results:

* 79.9% reduction in execution time.

* 30% reduction in costs.

* MAE of 12.5 seconds and R? of 0.92, a 75% improvement over historical data.

Key contributions include:

¢ Effective integration of machine learning and serverless computing to optimize scientific pipelines.
* Experimental validation with a geospatial water consumption pipeline.

* A reproducible methodological framework applicable to other scientific domains.

Page 60 of 69

HORIZON - 101092646 CloudSkin
29/12/2025 RIA

MAE Comparison Across Models

3 - m

t s s
XORO e (er et (el s

Figure 59: Mean Absolute Error (MAE) comparison across models.

We compared several methods to assess their performance in predicting and optimizing the du-
ration of the geospatial analysis pipeline:

¢ XGBoost Model: Gradient boosting model that captures complex feature interactions.
¢ Average (Baseline): Predicts using the mean execution time from training data.
* Linear Regression (Baseline): Assumes linear relations between features and duration.

¢ PCA + Linear Regression (Baseline): Uses PCA for dimensionality reduction before linear re-
gression.

* Design Space Analysis (DSA): This technique involves systematically exploring the possible
configurations of a system with the goal of finding the best one, but is computationally costly.

Table 10: Comparison of Models.

Model MAE (s) | Avg. MAE (CV) (s) | MAPE (%) R?
XGBoost 29.81 34.20 8.72% 0.8802
Baseline (Average) 120.90 - - -
Linear Regression 97.02 96.62 28.73% 0.3380
PCA + Linear Regression | 97.70 92.03 29.04% 0.3240

Cost-Benefit Analysis and Efficiency

Beyond its predictive accuracy, the XGBoost model offers significant cost savings compared to the
exhaustive Design Space Analysis (DSA). Table 11 compares configurations resulting in the minimum
and maximum execution durations, along with their respective costs per execution.

Table 11: Minimum vs Maximum Duration Configuration and Cost.

Parameter Minimum Duration | Maximum Duration
Number of Files 5 5

Splits 5 2

Input Size (GB) 0.25 0.25
Runtime Memory (MB) 2000 1024
Ephemeral Storage (MB) 1024 1024

vCPUs 1.13 0.58
Duration (s) 184.08 915.89

Cost per Execution (USD) 0.281 0.350

Cost Difference (USD) 0.069

Page 61 of 69

HORIZON - 101092646 CloudSkin

29/12/2025 RIA
/9? —o— Total Savings
=)
ED Break-even
= Point
[}
w)
E 0 6 12 18 24
5]
&= Time (Months)

Figure 60: Projected cost savings over time, assuming 10 executions per day. The break-even point
occurs at approximately 2 months.

== train (MAE)

200 m— test (MAE)

150 1

50 1

0 25 50 75 100 125 150 175 200
Training set size

Figure 61: Learning curve of the XGBoost model

The cost difference between these configurations is $0.069 per execution, resulting in approxi-
mately 19.71% savings per run. The initial training cost of $38.75 for the XGBoost model leads to a
break-even point after approximately 562 executions.

Assuming a rate of 10 executions per day, the model reaches the break-even point in about two
months.

In summary, the XGBoost model delivers substantial cost savings and a rapid return on invest-
ment. By efficiently identifying optimal configurations without exhaustive testing, it proves to be an
effective and practical solution for ongoing pipeline optimization.

Comparison of Real vs. Predicted Duration

To evaluate the XGBoost model’s ability to identify optimal configurations, we tested it on all
configurations from the Design Space Analysis (DSA), including both seen and unseen setups. The
configuration with the shortest real duration, selected by the DSA, was excluded from the training
set to evaluate whether the model could identify it as the most efficient in the test set. The results in-
dicated that the configuration with the shortest predicted duration (195.26 seconds) closely matched
the actual duration of 184.08 seconds. This alignment demonstrates the model’s effectiveness in iden-
tifying optimal configurations without the need for exhaustive testing.

Learning Curve Next figure shows the learning curve of the XGBoost model. The graph indicates
a significant reduction in error as the size of the training dataset increases. The narrow gap between
training and test errors indicates minimal overfitting and strong generalization capacity. During
model training, the early stopping rounds technique was implemented to prevent overfitting. This
technique stops training when no significant improvements in validation error metrics are observed
after a specified number of rounds, ensuring more efficient and robust training.

In summary, this Cloudskin use case demonstrates that artificial intelligence can automate decision-
making in serverless environments, reducing costs, accelerating research, and improving scientific
productivity. With this, we are moving towards smarter, more sustainable, and science-oriented
computing for the future, capable of leveraging artificial intelligence to improve performance, re-

Page 62 of 69

HORIZON - 101092646 CloudSkin
29/12/2025 RIA

@ Dashboard

Projects N Plarcels
Horadada'

\ Available Datasets | |

My Datasets P
Sales e N‘Eh

Purchases

Dictionary Q 9'
Tome Picheco (o
Marmenor
)

Tutorial

FOrte Ao

= Lealt | © Opensiretiap contrutos, Tl style by Humaniarian OpenSiretMap Team hosted by OpenSteetap France

Figure 62: Geographic search functionality for datasets

duce economic and processing costs, and mitigate the technology’s footprint.
5.5 Demos

The demonstrations of each experiment, in addition to validating the fulfillment of their specific
objectives, are carried out in an integrated way with Cloudskin, not only through the use of the com-
putational power of KIO and AWS, or through the integration capacity of the Learning Plane related
to the applied artificial intelligence model, with the one developed by BSC, but also through the stan-
dardization of APIs and data sharing systems, which allow both the validation of the use case and
the creation of interrelationships between the solutions, for the different technological environments
of Cloudskin.

Demo 1: Dataspace Each data provider has a biased and very limited view of the information,
preventing global data analysis that delivers added value and enables the development of advanced
automation and decision-support solutions. The first experiment addresses this shortcoming by pro-
viding an environment that enables the secure sharing of information, along with the necessary se-
lection functionalities to ensure that the analyzed information is accurate, up to date, and accessible.

The demonstration of the first experiment focuses on how this agricultural dataspace tackles data
management challenges and meets the requirements for information sharing, while abstracting the
data source, which may originate directly from sensors, edge servers, or private or public clouds,
thanks to centralization within the agricultural and environmental dataspace.

A solution is also presented through the dataspace to overcome the main barriers identified for
information sharing in the agricultural environment. On the one hand, these barriers are related to
information standardization, as it is necessary to work with multiple datasets that may include, to
cite some relevant examples, different units of measurement and volumes. The use of customized,
platform-definable data dictionaries makes it possible to address this barrier. However, one of the
main reasons for reluctance to share information is related to control over how the information is
used. To this end, the dataspace provides data usage and sharing control functionalities through the
creation of a system of contracts and access and usage conditions for the data.

Demo 2: Water usage footprint The second experiment builds upon the dataspace, a cloudless
service for advanced data analysis integrated with geospatial information. In addition to being a
practical application of the agricultural dataspace as a data source, it performs advanced analysis
of complex data within a cloudless distributed environment, demonstrating the use of continuous
computing for decision-making solutions and complex calculations.

Page 63 of 69

HORIZON - 101092646 CloudSkin
29/12/2025 RIA

@ Dashboard Admin / Available Datasets
= Projects Available Datasets snowings1tocoof 234 entries. refresn
| B Available Datasets Prv—
E My Datasets
Name Description Location Type -~ Updated Actions
B sales
| B Purchases Electrical conductivity B33 - Area33 Electrical conductivity B33 - Area33 free 2025-02-18 13:53:28 Get Dataset @ Preview
& pictionary Humidity B19 - Area31 Humidity B19 - Area31 free 202502-1809:32:55 (IGetDataset < Preview
? Tutorial
Humidity B27 - Area30 Humidity B27 - Area30 free 2025-02-18 09:24:10 (Get Dataset < Preview
Humidity B14 - Area30 Humidity B14 - Area30 free 2025-02-18 09:23:44 (GetDataset < Preview
Humidity B24 - Area30 Humidity B24 - Area30 free 202502-1809:24:04 (GetDataset < Preview
Pressure and Temperature Data - Alcoy Pressure and Temperature Data of the cen(...] free 2024-06-10 12:38:06 (O Get Dataset © Preview
Test dataset test description sale 2024-05-27 09:36:52 © Preview
Humidity B43 - Area30 Humidity B43 - Area30 free 2025-02-18 09:24:44 ()Get Dataset © Preview
Electrical conductivity B27 - Area32 Electrical conductivity B27 - Area32 free 2025-02-18 13:22:15 (O Get Dataset < Preview
Electrical conductivity B29 - Area33 Electrical conductivity B29 - Area33 free 2025-02-18 13:53:19 (Get Dataset < Preview
Name Description Location ~ Type Updated Actions
10 ¢ entries per page <1 5 n 7 2% >
@ Dashboard Admin / Dictionary / List
 Projects Dictionary showing1to100f30entries. Refresh
| B Avalable Datasets aad Entry
E My Datasets
Datatype Default unit Description Actions
B sales
| & purchases Irrigation Time s Irrigation Time © preview
8 Dpictionary Irigation Applied ml Irrigation Applied o Preview
Tutorial
C.E30cm ds/m CE30cm © Preview
CE18cm ds/m CE18cm © preview
CE12cm ds/m CE12cm © Preview
Volumetric humidity 30cm (%) % Volumetric humidity 30cm (%) © preview
Volumetric humidity 18cm (%) % Volumetric humidity 18cm (%) © preview
Volumetric humidity 12cm (%) % Volumetric humidity 12cm (%) © Preview
Entity Name ‘ Entity name variable © Preview
Flow meter (I/h) ih Flow meterin /h © preview
Datatype Default unit Description Actions

10 ¢ entries per page

Figure 64: Data dictionary functionality

Page 64 of 69

HORIZON - 101092646 CloudSkin

My Datasets
Murcia Agricultural Irfigation Data
Sales
Owner name
Purchases
CARM - Ministry of Agriculture of the Region of Murcia
Dictionary
Tutorial Origin
MIDA Murcian Institute of Agricultural and Environmental Research and Development
Start Date Range End Date Range
01/01/2025 =] 30/11/2025 o
Sales method
sale v
selling price (€)
1500
v Select Field
he sales price for rental
f Timestamp

Datasetdescription = KPA
Grados
Agriclutural Dataset. Temperature °C
Long Date
Pascales
Image Porcentaje
Milisiemens por centimetro
NO2

Agricultural.png Browse
O Geo-referenced dat SO2
fthe data are geo-refera PM2.5 media
PM10 media
Date
License Longtext
Kilobyte
K8ps
Category Total Latency (ms)
03
Agricultural CE v

Sint of interest, using

Proprietary license - |

Flow meter

Data use contract Flow meter (/)

Dataset Terms Of Us ~ Entity Name Browse
Volumetric humidity 12cm (%)
al data

pload a of te manually that the buyer has signed the contract.

’ 1o
Volumetric humidity 18cm (%)

(OJAutovalidate sales Volumetric humidity 30cm (%)

Automatically validatess C-E12€m
CE18cm

Format of generated ¢ C.E 30 cm
Irrigation Applied

% Field name Irrigation Time escription

1

selecti v

Figure 65: Functionality for creating and importing data

This experiment, besides the advanced processing of geospatial information, follows a transition
process depending on the state of the information.

From a data perspective, it develops a Profiler and metric APIs, integrated with Lithops and
Pyrun, allowing not only the information subject to analysis to be available but also the performance
and execution metrics necessary for process optimization—metrics that must not interfere with the
actual performance data during the metric collection process. From an information perspective, a
multi-user control platform integrated with Pyrun is created, enabling real-time metric visualization
and analysis through the development of a dashboard mechanism based on Grafana.

From an artificial intelligence perspective, a predictive model has been trained using XGBoost and
Optuna, validated with over 150 real executions of agricultural and environmental pipelines, capable
of predicting the optimal resources required for performing advanced calculations on geospatial and
dataspace data. This optimized cloud resource configuration reduces both the execution time of
processes and execution costs, offering a scalable solution with controlled costs.

Page 65 of 69

HORIZON - 101092646
29/12/2025

€ Data Cockpit

Efficiently mansge and explore your dsta

Uploa Fie: EET Publi Dalasels | Metsspace Geospalial

Cloudskin Section

CloudSkin
RIA

Cloudskin Catasets: | Electrical conductlty 810 - Area33.
-

& mpart Cloodskin Data

Pragress:

Daudskin Logs:

Goospatial Section

& eyt Geospatial Dala

~

Figure 66: DataCockpit, an interface for importing data, configuring parameters, and launching Al-

optimized runs

Figure 67: Data visualization and management, with advanced dashboards created in Grafana, Vue.js

+ Apache ECharts, integrated directly into PyRun

Page 66 of 69

HORIZON - 101092646 CloudSkin
29/12/2025 RIA

Real-Time Ovorview GaofiChat CPUMewks DiskMetncs Memory Mewics MetworkMetrics

Detalled Task Durations and Cencurrent Calls
e Time. | S T [Ul T [s T o e ot

DG O KO e

- IO 000000 N00000N000NNOONNN00D

. B ——
L —
Rool-Time Overview GantiChart CPUMelnies DiskMotrics Memory Melrics Network Metries.
Detailed Task Durations and Concurrent Calls
0 s Tone (e T (N Uhond o () Ot ime Qe e Cots

Figure 68: Approach achieves a 27% performance improvement compared to a known good baseline

configuration, and up to 70% improvement when compared to suboptimal configurations, while
maintaining identical output

Optimal Configuration (Al)

Find Optimal Configuration

Searching for optimal configuration. ..

Model loaded from catboost_model.bin.

optimal configuration found:
n_tiles: 7

num_files: 5

input_size gb: .25
Funtime_memory mb: 3808
ephemeral_storage_mb: 5192
worker_processes: 1
inwoke_pool_threads: 64
vepus: 1.7

Figure 69: Al configuration proposal

Without Al Optimization

ltural Use Case Execution

With Al Optimization

Figure 70: Comparative execution results

Page 67 of 69

HORIZON - 101092646 CloudSkin
29/12/2025 RIA

6 Conclusions

This deliverable shows the results of how Cloudskin technologies, in terms of platform and compo-
nents, could help with different use cases. The proposed proof of concept, methodologies and demos
can be reproduced for the other related use cases, empowering the business with better performance
efficiency, lower cost, better reliability, scalability and confidentiality.

Page 68 of 69

HORIZON - 101092646 CloudSkin
29/12/2025 RIA
References

[1] CloudSkin Deliverable 2.3 Adaptive virtualization for Al-enabled Cloud-edge Continuum.
CloudSkin, June 2024.

[2] P. Liu, J. O. Torra, M. Palacin,]J. Guitart, J. L. Berral, and R. Nou, “Data-connector: An agent-
based framework for autonomous ml-based smart management in cloud-edge continuum,” in
2024 IEEE 32nd International Conference on Network Protocols (ICNP), pp. 1-6, 2024.

[3] “Amazon ec2 on-demand pricing.” https://aws.amazon.com/ec2/pricing/on-demand/.
[4] “Electricity price.” https://www.globalpetrolprices.com/Spain/electricity_prices/.
[5] “Amazon compute service level agreement.” https://aws.amazon.com/compute/sla/.

[6] M. Macias and J. Guitart, “Sla negotiation and enforcement policies for revenue maximization
and client classification in cloud providers,” Future Generation Computer Systems, vol. 41,
pp- 19-31, 2014.

[7] E. Mo, A. S. Shamsabadi, K. Katevas, S. Demetriou, I. Leontiadis, A. Cavallaro, and H. Had-
dadi, “Darknetz: towards model privacy at the edge using trusted execution environments,” in
Proceedings of the 18th International Conference on Mobile Systems, Applications, and Services,
MobiSys 20, (New York, NY, USA), pp. 161-174, Association for Computing Machinery, 2020.

[8] H. Chang, H. Jia, Y. Yang, B. Wang, and T. Zhang, “Ginver: Training-free collaborative inversion
attacks against split learning,” in Proceedings of the ACM Web Conference 2023, pp. 1952-1962,
2023.

[9] “Pravega.” https://cncf.pravega.io, 2025.

[10] R. Gracia-Tinedo, F. Junqueira, T. Kaitchuck, and S. Joshi, “Pravega: A tiered storage system
for data streams,” in ACM Middleware "23, p. 165-177, Association for Computing Machinery,
2023.

[11] “Gstreamer.” https://gstreamer.freedesktop.org/, 2024.

[12] “Pravega - gstreamer connector.” https://github.com/pravega/gstreamer-pravega, 2024.

Page 69 of 69

https://aws.amazon.com/ec2/pricing/on-demand/
https://www.globalpetrolprices.com/Spain/electricity_prices/
https://aws.amazon.com/compute/sla/
https://cncf.pravega.io
https://gstreamer.freedesktop.org/
https://github.com/pravega/gstreamer-pravega

	Executive summary
	Use case: Mobility
	Overview
	Business story
	Why this use case needs the compute continuum?

	Cloud-Edge continuum infrastructure for mobility use case
	Cloud-Edge hardware
	CloudSkin platform

	Experiments, KPIs and benchmarks
	Results
	Demos

	Use case: Metabolomics
	Overview
	Business story
	Why this use case needs the compute continuum?

	Cloud-Edge continuum infrastructure for the metabolomics use case
	CloudSkin platform
	Challenge CH1: Cost-efficiency with serverless cloud functions
	Challenge CH2: Privacy-preserving inference on on-premises edge cluster
	Cloud-Edge hardware

	Experiments, KPIs, benchmarks and results
	Demos

	Use case: Surgery
	Overview
	Business story
	Why this use case needs the compute continuum?

	Cloud-Edge continuum infrastructure for the surgery use case
	CloudSkin platform
	Cloud-Edge hardware

	Experiments, KPIs and benchmarks
	Results
	Demos

	Use case: Agriculture
	Overview
	Business story
	Why this use case needs the compute continuum?

	Cloud-Edge continuum infrastructure for the mobility use case
	Cloud-Edge hardware
	CloudSkin platform

	Experiments, KPIs and benchmarks
	Results
	Demos

	Conclusions

